X-ray spectroscopy With LAXPC

Suman Bala

Spectrum

 What is spectrum? Distribution of the photons with energy.
Plot of the histogram of events in Channel/Energy bin.

Spectrum

Suppose we observe C(I) counts in channel I from the source. $C(I) = T \int R(I, E)A(E)S(E)dE$

- T: The observation length.
- **S(E)**: The source flux
- R(I,E) (RMF): The probability of an incoming photon of energy E being registered in channel I.
- A(E) (ARF): The energy-dependent effective area of the telescope and detector system

Spectrum

$$C(I) = T \int R(I, E)A(E)S(E)dE$$

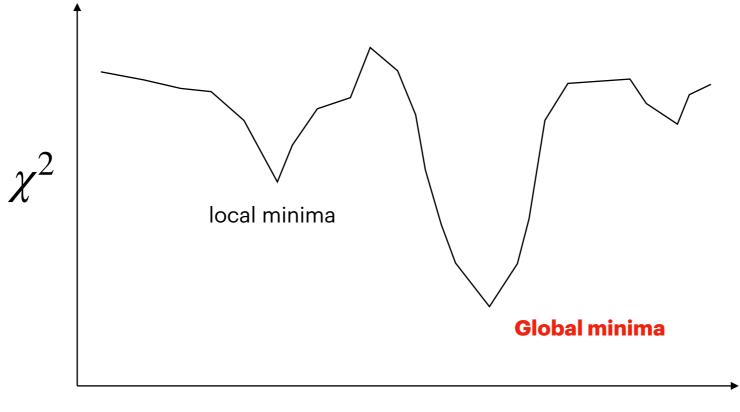
- Here T, A(E) and R(I,E) are known and we want to find S(E).
- The energy range can be binned into small bins, and we get $C_i = T \sum R_{ij} A_j S_j$
- Here, S_i is now the flux in the energy bin J. We
- We can calculate the inverse of R_{ii} , and get

$$S_j = \frac{1}{TA_j} \Sigma R_{ij}^{-1} C_i$$

• Such inversions tend to be non-unique and unstable to small changes in C_i . This amplifies the noise.

Forward-fitting algorithm

$$C(I) = T \int R(I, E)A(E)S(E)dE$$


- We Choose a model spectrum, *f(E)*, which is described in terms of a few parameters (i.e., *f(E,p1,p2,...)*)
- For each f(E), a predicted count spectrum $C_p(I)$ is calculated and compared to the observed data C(I).
- The most common fit statistic in use for determining the "best-fit" model is "Chi-square" (χ^2), defined as follows:

$$\chi^{2} = \sum (S_{i} - B_{i}T/T_{b} - (C_{p})_{i}T)^{2} / ((\sigma_{s})_{i}^{2} + (\sigma_{B})_{i}^{2})$$

Applicability of χ^2 statistics

$\chi^{2} = \Sigma (S_{i} - B_{i}T/T_{b} - (C_{p})_{i}T)^{2}/((\sigma_{s})_{i}^{2} + (\sigma_{B})_{i}^{2})$

- The χ^2 statistic fails in low-counting regime.
- Binned data, χ^2 statistics or the Gaussian statistics
- Unbinned data, C-statistics or Poisson statistics
- We can rebin the data so that each bin contains a large enough number of counts.

Parameter value

χ^2 in a nutshell

• Reduced χ^2 large

Errors are under-estimated The model does not describe the data well

• Reduced χ^2 small

Errors are over estimated.

Too many parameters. Data is overfitted.

* The more complicated the model and the more highly correlated the parameters, then the more likely that the algorithm will hardly find the true minimum

Analysis Software

- **<u>XSPEC</u>**: or the Python version **<u>PyXspec</u>**.
- **Sherpa:** Multi-dimensional fitting program which includes the XSPEC model library. Python interface.
- **ISIS:** S-lang interface.