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Astrosat CZTI
Hard X-ray Spectroscopy and Imaging

Coded Mask imaging with pixilated 
CZT detectors

 Mask and support structure designed 
for shielding up to ~100 keV

 Detectors have significant efficiency 
upto ~400 keV

 Results in additional capabilities

 Hard X-ray transient monitoring

 Hard X-ray polarimetry

 Detector plane area: 976 cm2

 Pixel size: 2.46 x 2.46 mm2

 Total number of pixels: 16384

 Detector thickness : 5 mm



Four Independent Quadrants
CZTI Configuration

 Size: 484 x 484 x 600  mm3

 Weight: 50 kg Power: 50 Watts

Coded Mask

Collimators

Alpha tag 
cal. source

Veto 
Det.

CZT Det. 
plane

 Total 64 modules 
(16 in each 
quadrants)

 ASIC based 
readout (2 x 128 
ch. ASIC)

 Two FOVs:    
4.67° × 4.67°
~80° × 80°



 Indirect imaging with coded aperture mask 
 8’ angular resolution, simultaneous background measurement

 Mask and shielding designed up to 100 keV
 Hard X-ray monitoring above ~100 keV

 Time tagged event data with 20 μs accuracy
 Allows Compton spectroscopy and polarimetry

 Alpha-tagged detector for onboard calibration
 Veto detector for additional background rejection
 Low inclination orbit
 Absolute time correlation with onboard SPS

CZTI Salient Features

 No flux concentration  Always background dominated
 Accurate background knowledge is essential

 Mostly continuum spectroscopy 
 Accurate knowledge of detector response is essential 

Hard X-ray Astronomy



 In-direct imaging technique

 Uses mask shadow pattern

 Angular resolution determined 
by mask pixel size and mask to 
detector distance

Coded Mask Imaging

In real world
 Mask pattern is not invertible matrix
 Detector has significant background
 Detector plane is not uniform / ideal

 Reconstructed images are not perfect

Pin-hole 
imaging

Coded mask 
imaging

No 
imaging



 CZTI employs 16 x 16 URA variant  One for each detector module

 7 different URA patterns are to make  mask pattern for one quadrant.

 The same pattern is used for other quadrants with 90 deg. Rotation.

 Different methods of image reconstruction  FFT, cross correlation, 
back projection, Bayesian  CZTI Pipeline uses FFT

Coded Mask Patterns
 Random pattern  simplest mask, ~50 % open fraction, slideloabs
 Uniformly Redundant Array (URA)  flat slidelobes, ghosts

CZTI Coded Mask



CZT Detector Modules

Semi-conductor detector 
 Lower energy per e-/h+ pair 

 Better energy resolution
 High band gap energy then Si/Ge 

 Near room temp. operation
 High efficiency 

 higher energy range
 No intrinsic amplification 
 Different e-/h+ mobility 

 Asymmetric line shape

 Smaller pixel size 
 Better imaging and spectroscopic 

performance
 Large number of pixels

 ASIC based readout essential
 Each pixel is independent detector

8 mm

7 
m

m

Best candidate for large area position sensitive detector  required 
for coded aperture imaging



CZT line shape

Six input parameters to be 
measured experimentally

• μτ-electron

• μτ-hole

• Electric field
• Energy resolution
• Electronics gain
• Offset

Hecht 
Equation

For non-
pixilated 
detector



CZT Detector Response
 CZTI line profile is not 

Gaussian

 Standard Hecht equation 
based model 

 under predicts tail at low 
energies for multi-pixel 
crystals

 Essential to consider charge 
sharing across pixels

Am left edge

Am right edge

Am center

Co left edge

Co right edge

Co center Slide a 100 μm slit across pixels 
with accuracy of 50 μm

 Simultaneous fit of spectra at 
edges and center at two energies

New CZTI Line model validation



CZTI Response Matrix

 Group similar pixels
 Compute redistribution 

matrix for each group   
 All parameters and matrices 

stored in CALDB
 Final multi-pixel response matrix 
 Weighted addition

N
o.

 o
f 

Pi
xe

ls

N
o.

 o
f 

Pi
xe

ls
N

o.
 o

f 
Pi

xe
ls

N
o.

 o
f 

Pi
xe

ls

μτe μτh

σ r0

Key parameter for all pixels

Pixel 120 Pixel 200

 Total ~80000 spectral fits   Using 
PRL Vikram-100 HPC cluster

 Proper Fitting  ~90% of the pixels to 
obtain model parameters 

 Rest flagged spectroscopicallly bad

 Model implemented in ISIS 
 Simultaneous fit to spectra at three 

energies for all pixels at five temp.

(Vadawale 
et al. 2016)
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 Data dominated by background events
 Simultaneous measurement of background from masked pixels
 Mask weighting technique for background subtracted source 

spectrum  

Mask-weighting

Mask-weighted spectrum:
Background subtracted source 
spectrum per fully illuminated 
unit area on the detector plane
(similar to Swift BAT)

D  Renormalization factor 
N  Area rescaling for a given 
pointing
Recalculated when pointing 
offset changes by a fixed 
value (3’)
To account for S/C jitter

Spectroscopy with Coded Mask

Coming up 
 Revised algorithm (next version)

 Include energy dependent 
background

 No more area rescaling

 Spectrum in terms of 
observed counts



CZTI In-flight 
observations



 First observations showed ~10 times 
higher count rate

 Variance is not Poissonian
 All events are not “independant”, 

both temporally and spatially

 Similar effect in other missions 
Integral (PICsIT)

 Possible to identify by clever algorithm

 Advantage of having time tagged event information unlike earlier 
experiments (RT-2/Chronos-Photon, HEX/Ch-1)!!

Onboard bunch cleaning from Feb 16 by a firmware patch

‘Bunch’ Events
CZTI In-flight ‘Observations’

(Vadawale et al. 2016)

(Ratheesh et al. 2021)



Anomalous pixels
 A fraction of pixels have anomalously 

low count rates since first day
 Tantalum lines and 60 keV line are 

not seen in the same pixels
 Gain of those pixels changed 

drastically–threshold ~70 keV !!
 ~20% of pixels  flagged as 

spectroscopically bad in CALDB

Background non-uniformity
 Background not expected to be uniform 

by design
 Knowledge of this non-uniformity 

important for effective background 
subtraction

 Multiple blank sky observations used to 
derive the fixed patterns of background 
in the detector plane

CZTI In-flight ‘Observations’



Different images in all of quadrants

 Imaging by cross-correlation of 
different crab observations

 Module level imaging to identify the 
image shifts – measure boresight

 Consistent results across multiple 
observations

 Account for flux discrepancy

Indicates mask shifts 
or quadrant tilts

Quadrant X Shift 
(mm)

Y Shift 
(mm)

Q0 0.00 0.00

Q1 -1.45 0.00

Q2 0.00 1.68

Q3 0.00 1.50

CZTI In-flight ‘Observations’

(Vibhute et al. 2021)



In-flight gain calibration
 Alpha-tag source  Am-241 source 

encapsulated in CsI crystal
 Spectrum of 59.6 keV line using 

alpha tagged events
 Background spectrum has Ta K-

alpha and K-beta peaks
 Three lines for in-flight calibration
 Pixel gain measurement

Low energy threshold (LLD)
 Each of the detector module has a 

configurable LLD 

 Pixel to pixel gain vairiations will make 
actual LLDs in PI space for each pixel 
different

 Pixel wise LLD measurement required for 
response  automated measurements

CZTI In-flight ‘Observations’

All parameters stored in CALDB  Standard HEASARC Caldb file structure

Mithun et al. (in prep.)



Q0 Q1

Q3 Q2

Cross calibration with NuSTAR
 PI: 2.09+- 0.0015; Norm (FPMA) – 7.97455+- 0.025
 CZTI Q0 norm – 0.87 * NuSTAR FPMA 

Crab spectrum: All Quadrants



Specific Details of CZTI data 
analysis by Shah Alam

Hard X-ray 
polarimetry with 
CZTI



 X-ray observations so far use three main attributes
 Energy, direction, arrival time

 Astrophysical X-rays have two more independent attributes
 Polarization fraction, polarization direction

 Can provide vital information on radiation processes, geometry, 
magnetic fields

 Not used effectively so far

Unpolarized Partially polarized Fully polarized

 Importance of polarimetric observations known from early days 
of X-ray astronomy

 First attempts by rocket flights in late 1960s
 Only dedicated satellite experiment in 1975 on-board OSO-8
 Few experiments attempted later by could not succeed due to 

various reasons
 Two dedicated missions in next couple of years

X-ray Polarimetry



How to measure X-ray polarization 

 Extremely difficult measurements
 Highly systematic prone  modulation amplitude is positive definite

Non optimized polarimetry  with 
multi element detector systems 

Many attempts, but controversial results
Main concern  not verified before launch  

The only well accepted polarization 
measurement of Crab nebula

Brag reflection Photo-electric Scattering 

Weisskopf et al. (1978)

(Forot et al. 2008)



Not designed, but well tested for
Hard X-ray polarization easurements
 Compton polarimetry with double 

pixel events
 100 – 380 keV energy range, due to 

~30 keV pixel threshold
 Limited to very bright sources
 A significant addition to the 

nascent field of X-ray polarimetry

Hard X-ray Polarimetry with CZTI

 Experimentally confirmed before 
launch
 Also with unpolarized X-rays

Vadawale et al. (2015)

Validation of event selection

Background subtraction is the key



 Most sensitive (6σ) measurements 
in energy range 100 – 380 keV

 Broadly in agreement with available 
measurements at other energies

PF: 32.7±5.8

PA: 143.5±2.8

PF: 39.0±10.0

PA: 140.9±3.7

Crab Polarization Measurements with CZTI

 Total 800 ks data used for 15 obs. 

Total Crab Off-pulse

Phase Resolved 
Polarization Analysis
 Pulse period  33.7 ms
 Totally new results
 Significant variation in 

polarization during the 
off-pulse region 

 New challenge for 
pulsar emission models 

Vadawale et al. 2018 (Nature Astronomy)

PF: 33.3±4.1

PA: 143.5±1.7 Improved 
significance  (8σ) 
with ~1.8 Ms data



 New data confirms the strong variation 
of polarization in off-pulse region

 Re-analysis of POGO+ data  No 
significant variation in off-pulse 
variation
 Due to strong energy dependence

 Only other phase resolved polarization 
measurement available in optical
 Suggest Stripped-wind origin

 CZTI results broadly agrees with 
stripped wind origin

 Fundamental change in understanding of 
origin of X-ray emission 

 outside light cylinder!

 Need detailed modelling of phase 
dependent as well as energy dependent 
polarization properties at X-ray energies 

Crab Hard X-ray Polarization

(Chauwin et al. 2018)

(Harding et al. 2019)



CZTI as GRB 
Detector



CZTI as GRB Monitor

Eart
h

Crab Crab

GRB151006
A

 Best effective area in energy 
range of 150 to 400 keV

 First GRB on first day / first 
observation 

 More then 450 GRBs till now

 Rudimentary localization 
possible
• Useful when no other option!

Till Feb. 2020



 Selection based on number of Compton events 
 11 GRBs during first year (NCOMPT > 350)
 Previous measurements available only for 10 

GRBs  Doubling the sample one year
 ~25 during next four years (more stringent 

selection)

 Modulation detection in GRB is relatively easy
 Accurate background available pre / post GRB
 High signal-to-noise

 Estimation of accurate polarization fraction is 
difficult as GRBs are highly off-axis
 Requires modulation curves for both 100% and 

completely unpolarised X-rays from the 
location of GRB

 Obtained by extensive Geant4 simulations with 
the mass model of full spacecraft

 Require extensive computing effort 
(Chattopadhyay et al. 2019)

GRB Polarimetry 



GRB Polarimetry 
Off-axis polarimetry relies heavily on Geant4 simulations
 Validation of the AstroSat Mass Model

 Experimental confirmation of 
CZTI off-axis polarimetry

(Mate et al. 2021)

(Aarthy et al. under review)



CZTI for EM-GW follow-up

GW170817  BNS merger
 EM-counterpart was just on the sensitivity 

limit of present detectors
 Daily detection of such events in GW waves 

expected with network of 5 GW detectors
 Most of events likely to be missed by  

present / planned GRB detector

 Sensitivity in EM band lagging behind GW!!
(LIGO Collaboration, ApJ, 2017)

CZTI

Contributed to EM counterpart studies 
for at least two GW sources
 GW170104  Prevented false alarm
 GW170817  Enhanced confidence 

ATLAS17aeu

GRB170105A

GW170104

GW170817

(Kasliwal et al., Sci., 2017)

(Bhalerao et al., ApJ, 2017)






DAKSHA – On Alert for High Energy Transients

DAKSHA Key features:
 Order of magnitude more sensitive
 Continuous full Sky coverage (two S/C on LEO or one S/C in HEO)
 Sensitive GRB observations over wide spectral band (1 keV to 1 MeV) 

with three different types of detectors
 SDD array with total effective area ~100 cm2 covering 1 – 40 keV
 CZT detectors with effective area ~2000 cm2 covering 20 – 300 keV
 Scintillator with eff. area of ~1600 cm2 covering 100 keV – 1 MeV

Scientific objectives: 
 Detecting EM-counterparts of 

the Gravitational Wave sources

 Wide band studies of GRB

 Small but ambitious mission on short time scale (~5 years)
 IIT-Bombay-PRL-TIFR-IUCAA joint program 

 Under consideration by ISRO



 CZTI is operating perfectly for more then five years now
 Imaging / spectroscopy up to ~150 keV for bright 

sources
 CZTI is showing fantastic performance in its ‘additional’ 

capabilities 
 Proven to have good polarimetric capabilities in extended 

energy range of 100 – 300 keV

 Accurate measurement of Crab hard X-ray polarization

 First time phase resolved polarimetry of Crab

 Interesting results on Cygnus X-1 in near future

 CZTI is also a prolific GRB detector

 Very good GRB Polarimeter, large sample of GRBs

Summary



Thanks…
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