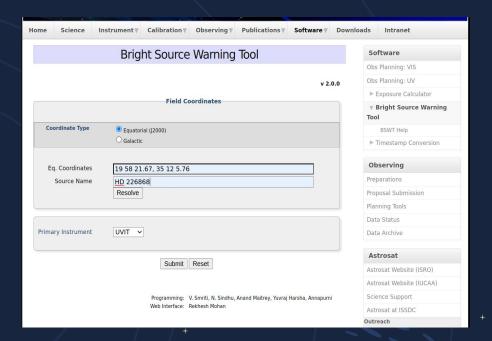
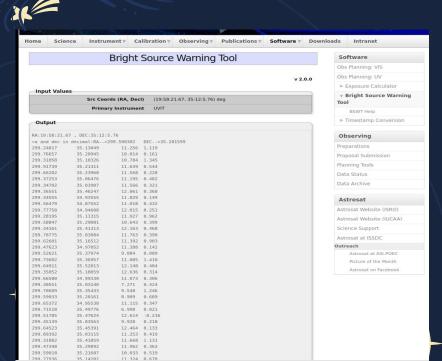


UVIT safety check tools


Divya Rawat
AstroSat Science Support Cell, IUCAA



Gives a list of all the bright visible stars in the field of a given target. Link: https://uvit.iiap.res.in/Software/bswt

UVIT Bright Source Warning Tool


```
35. 20876
299.27997
               35.17303
                               9.728 0.155
299.71710
               35.10518
                               9.539 0.232
299.98871
               35.21306
                               12.492 0.162
299.66150
               35.06923
                               8.853 -0.034
299 44580
               35.13369
                               11 279 0 434
Safe Count limit for FUV: 1500
Safe Count limit for NUV: 1500
  FUVCaF2-1 : Field Is NOT SAFE For Observation ~ ~
  FUVCaF2-2 : Field Is NOT SAFE For Observation ~ ~
    FUVBaF2 : Field Is NOT SAFE For Observation ~ ~
FUVSapphire : Field Is NOT SAFE For Observation ~ ~
  FUVSilica : Field Is SAFE For Observations, provided no GALEX Bright source
Total Counts: 2188.337128
  NUVSilica : Field Is NOT SAFE For Observation ~ ~
      NUVB4 : Field Is NOT SAFE For Observation ~ ~
     NUVB13
     NUVB13 : Field Is NOT SAFE For Observation ~ ~
     NUVB15 : Field Is NOT SAFE For Observation ~ ~
      NUVN2 : Field Is NOT SAFE For Observation ~ ~
 SEARCHING FOR BRIGHT SOURCES in GALEX GR7
No GALEX FUV Bright stars in the field
 No GALEX NUV Bright stars in the field
                                   Download Output [TXT] [PDF]
```

Return to User Inputs

UVIT VIS/FUV/NUV Filter Checking Tool

To Check whether a field can be safely observed with UVIT VIS/FUV/NUV filters.

- The VIS channel is primarily used for the spacecraft tracking.
- Output of VIS filter checking tools is mandatory for UVIT observations.
- Link to filter checking tools: https://github.com/prajwel/canuvit#readme
- >> pip install canuvit
- >> canuvit -h

UVIT VIS/FUV/NUV Filter Checking Tool

- X
- To Check whether a field can be safely observed with UVIT VIS/FUV/NUV filters.
- The VIS channel is primarily used for the spacecraft tracking.
- Output of VIS filter checking tools is mandatory for UVIT observations.
- Link to filter checking tools: https://github.com/prajwel/canuvit#readme
- >> pip install canuvit
- >> canuvit -h

```
divvarawat@svsadmin-OptiPlex-5050:~$ canuvit -h
Usage: canuvit [OPTIONS]
  Program to check if a given coordinate can be safely observed using UVIT.
  Example usage:
  canuvit -r "13:12:14" -d "-14:15:13"
Options:
  --all
                                   Check safety for all filters. [default:
  --vis
                                   Check saftey for only visible filters.
                                   Check safety for only UV filters.
  - - UV
                                   Right ascension of the coordinate. Format:
  -r. --ra RA
                                   hh:mm:ss[.ss] e.g. "00:54:53.45" [required]
  -d, --dec DEC
                                   Declination of the coordinate. Format:
                                   [-]dd:mm:ss[.ss] e.g. "-37:41:03.23".
                                  [required]
  -i, --instrument [uvit|sxt|czti|laxpc]
                                   Instrument to check for. [default: uvit]
  -v. --verbose
                                   Increase output verbosity.
  --version
                                  Show the version and exit.
  -h, --help
                                  Show this message and exit.
divvarawat@svsadmin-OptiPlex-5050:~$
```

UVIT VIS/FUV/NUV Filter Checking Tool

>> canuvit -r "source_RA" -d "source_Dec"
"source_RA" is Right ascension of the coordinate in hh:mm:ss[.ss]
"source_Dec" is Declination of the coordinate in [-]dd:mm:ss[.ss]

```
divyar@ravva-HP-Notebook:~$ canuvit -r "12:12:12" -d "12:12:12"
Payload: uvit, Coordinates: 12 12 12, 12 12 12
### VIS
                                                                                      1624.9
12:12:22.944
              +12:17:23.856
                               11.126 0.814
                                                      1296.7 121.0
                                                                                      1580.6
                                                      1457.4 234.9
                               11.426 0.451
                                                                                      1915.2
12:11:01.656
                               11.874 0.694
                                                      754.3 89.1
                                              G5
12:11:11.5272 +12:03:14.04
                               12.177 0.322 F0
                                                      803.1 143.5
                                                                      101.4 18.2
                                                                                      1061.7
Safe filters: ['VIS3', 'VIS2', 'VIS1', 'ND1', 'BK7']
Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_CUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-xd-mcat.fits.gz
FUV observations seem to be absent! Using M fuv = M nuv - 1.65.
Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-nd-int.fits.gz
### NUV
                                   Mag Mag_corrected silica b4 b13 b15 n2
    1 12:12:32.3946 +12:07:27.4144 19.32
    2 12:11:11.6503 +12:03:14.7794 16.25
                                                16.25 31.75 6.99 8.57 2.35 1.75
    3 12:12:41.0882 +12:14:58.2679 16.15
                                                16.15 34.66 7.63 9.36 2.56 1.91
    4 12:12:15.3493 +12:29:18.1277 19.50
                                                19.50 1.59 0.35 0.43 0.12 0.09
    5 12:11:35.0116 +12:12:04.7063 16.47
                                                16.47 25.93 5.70 7.00 1.92 1.43
Safe filters in NUV: ['Silica', 'NUV-grating', 'NUV-B4', 'NUV-B13', 'NUV-B15', 'NUV-N2']
```

UVIT-VIS/FUV/NUV Filter Checking Tool

- The UVIT ~20 arc-minute field of view can have potential bright objects that can trigger a BOD.
- Due to offsets relative to UVIT :(1) SXT : primary instrument search 25 arc min around TOI and (2)
 LAXPC: primary instrument search for 28 arc min around TOI.


```
divvar@ravva-HP-Notebook:~S canuvit -r "12:12:12" -d "12:12:12'
Payload: uvit. Coordinates: 12 12 12, 12 12 12
### VIS
ra hms dec dms mag
12:11:52.7568 +12:07:47.532
                              11.096 0.864
                                                                                     1624.9
               +12:17:23.856
                               11.126 0.814
                                                      1296.7 121.0
                                                                                     1580.6
12:11:35.016
                               11.426 0.451
                                                      1457.4 234.9
                                                                     180.9
                                                                                     1915.2
12:11:01.656
               +12:08:35.916
                               11.874 0.694
                                                              89.1
                                                                      69.2
                                                                             16.8
                                                                                     950.9
12:11:11.5272 +12:03:14.04
                               12,177 0,322
                                                      803.1 143.5
                                                                                     1061.7
12:12:05.5368 +12:19:09.768
                             12.268 0.787
Safe filters: ['VIS3', 'VIS2', 'VIS1', 'ND1', 'BK7']
Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-xd-mcat.fits.gz
FUV observations seem to be absent! Using M_fuv = M_nuv - 1.65.
Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-nd-int.fits.gz
### NUV
                                  Mag Mag corrected silica b4 b13 b15 n2
   1 12:12:32.3946 +12:07:27.4144 19.32
   2 12:11:11.6503 +12:03:14.7794 16.25
                                               16.25 31.75 6.99 8.57 2.35 1.75
   3 12:12:41.0882 +12:14:58.2679 16.15
                                               16.15 34.66 7.63 9.36 2.56 1.91
   4 12:12:15.3493 +12:29:18.1277 19.50
                                               19.50 1.59 0.35 0.43 0.12 0.09
   5 12:11:35.0116 +12:12:04.7063 16.47
                                               16.47 25.93 5.70 7.00 1.92 1.43
Safe filters in NUV: ['Silica', 'NUV-grating', 'NUV-B4', 'NUV-B13', 'NUV-B15', 'NUV-N2']
```

UVIT-VIS/FUV/NUV Filter Checking Tool

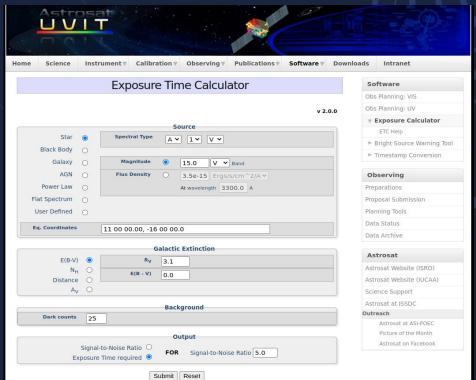
• The filters for which the count rates are lesser than 1500 in both NUV and FUV are safe for observations.


```
### FUV
                                   Mag Mag corrected caf2 baf2 sapphire silica
    1 12:12:32.3946 +12:07:27.4144 19.32
                                               17.67 1.65 1.40
    2 12:11:11.6503 +12:03:14.7794 16.25
                                               14.60 28.17 23.94
                                                                   17.75
                                                                           6.20
   3 12:12:41.0882 +12:14:58.2679 16.15
                                               14.50 30.75 26.14
                                                                           6.76
   4 12:12:15.3493 +12:29:18.1277 19.50
                                                                           0.31
                                               17.85 1.41 1.20
   5 12:11:35.0116 +12:12:04.7063 16.47
                                               14.82 23.00 19.55
Safe filters in FUV: ['CaF2', 'FUV-grating', 'BaF2', 'Sapphire', 'Silica']
divyar@ravya-HP-Notebook:~$
divvar@ravva-HP-Notebook:~$ canuvit -r "19:15:11.6" -d "10:56:44" -i sxt
Payload: sxt, Coordinates: 19 15 11.6, 10 56 44
### VIS
ra_hms dec_dms mag
19:16:46.296
                                                      49400.0 16200.0 11000.0 1179.0
19:16:46.428
               +10:58:46.74
                                      0.197
                                              A7
                                                      34700.0 6816.4 3733.0 793.6
                                                      40700.0 10500.0 4130.9 950.0
19:14:02.4984 +10:38:44.988
                               8.3
                                       -0.01
19:14:02.6232
              +10:38:44.592
                              8.342
                                      0.296
                                              A9
                                                      29700.0 5666.7 3636.5 676.0
                               9.312
19:16:21.1008
                                      0.44
                                                      10200.0 1646.2 1267.7 230.2
                                                                                      13400.0
19:15:08.1456
               +10:34:31.476
                               9.355
                                      0.524
                                              F8
                                                       8744.7 1230.7 987.3
                                                                             195.9
                                                                                      11300.0
                                                       10500.0 1882.5 1330.7 239.0
19:16:00.924
               +10:37:12.576
                               9.382
                                       0.343
Safe filters: ['ND1']
WARNING! there exists 2.0 pair of bright stars which are closer than
10.0 arcseconds!
0 Galex tiles found. Galex observations around
the given target is not available. Using TD1
catalogue to estimate UVIT count rates.
The galactic latitude is between -30 to 30.
Your field cannot be checked using TD1 catalogue!
```

divyar@ravya-HP-Notebook:~\$ _

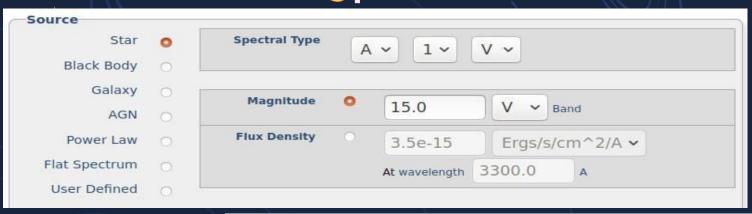
Special cases UVI FUV/NUV Filter Checking To

- Special cases were discussed in last year webinar by Jayashree and Shah Alam.
- Link: http://astrosat-ssc.iucaa.in/workshops



X

Link: https://uvit.iiap.res.in/Software/etc


Input: source type, magnitude/flux density, source coordinate

Output: S/N, exposure time

Star

Black Body

Allowed Range:
 0.0K to 10⁸K

Temperature of a blackbody decides the shape of its spectrum.



Galaxy

AGN

 Types of template spectra: Liner, Seyfert 1, Seyfert 2, and QSO.

Power Law

Star	0	Index	-1.0	
Black Body	0	Redshift	0.00	0
Galaxy	0			
AGN	0	Magnitude	0	15.0 V V Band
Power Law	0	Flux Density	0	3.5e-15 Ergs/s/cm^2/A >
Flat Spectrum	0			At wavelength 3300.0 A
User Defined	0			
Eq. Coordinates		11 00 00.00, -16	00 00	0.0

Flat Spectrum

- $S_{\lambda} \propto \lambda^{\alpha}$
- Allowed range of α is -5 to

			Jource	
Star	0	Spectrum Upload	Choose file No file chosen	
Black Body	0		Redshift Normalize	
Galaxy	0			
AGN	0			
Power Law	0			
Flat Spectrum	0			
User Defined	0			

user-defined

			Source
Star	0	Spectrum Upload	Choose file No file chosen
Black Body	0		Redshift Normalize
Galaxy	0		
AGN	0		
Power Law	0		
Flat Spectrum	0		
User Defined	0		

Ascii file format

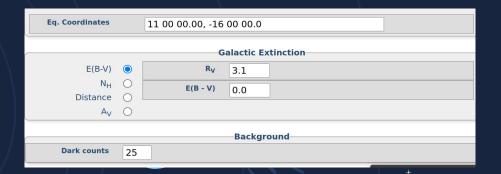
```
# My source's spectrum
                 Flux density
# Wavelength
                 (ergs/s/cm^2/Å)
# (angstroms)
1370.10144043
                 3.97418026e-09
1441.79272461
                 5.91593765e-09
1502.95971680
                 9.01411200e-09
1569.54650879
                 1.03960225e-08
1642.30700684
                 1.38279651e-08
1722.14147949
                 1.42179048e-08
1810.13403320
                 1.73137944e-08
```


Source Coordinate Format: (RA, decl) = "hh mm ss.ss, +/-dd mm ss.ss"
 Galactic Extinction parameter is calculated using relation:

$$E(B-V) = A_B - A_V$$

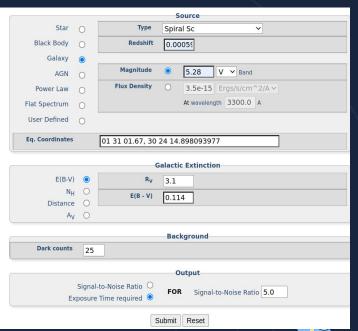
- N□ input units are 10²¹ cm⁻²
- Allowed range of N□ 0.00001 to 10000

Eq. Coordinates		11 00 00.00, -16	0.00 00.0		
			ialactic Ex	tinction	
E(B-V)		R _V	3.1		
N _H Distance	0	E(B - V)	0.0		
A _V	0				
			Backgro	ound	
Dark counts	25				



Background Counts: The normal value ~ 25 counts per second which is detector noise,
 Proposer can provide larger one wants to consider other external contribution.

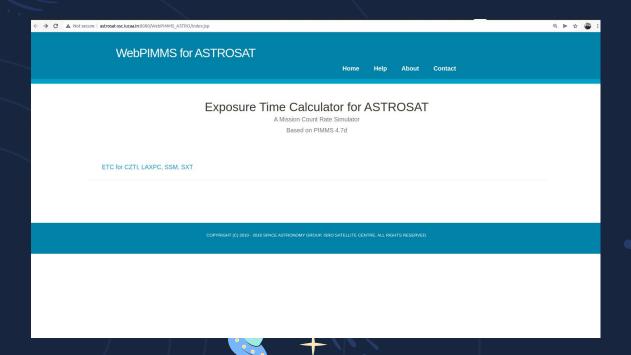
Parameter: Output


- Signal to noise ratio or
- Exposure time

Input for Galaxy M33

Output

	39 deg. (Lower limit is 30 deg.)	Galactic Latitude:
Exposure Time (s	Source count rate (s ⁻¹)	Filter
0.07	356.9	FUV CaF2-1
0.08	303.5	FUV BaF2
0.10	239.2	FUV Sapphire
0.26	97.82	FUV Silica
0.08	314.9	FUV CaF2-2
less than 0.035	3751.9	NUV Silica
0.32	78.33	NUV B15
less than 0.035	1174.0	NUV B13
less than 0.035	1473.2	NUV B4
0.07	335.5	NUV N2
less than 0.035	2.69 x 10 ⁺⁰⁴ Too Bright!	VIS 3
less than 0.035	8113.3	VIS 2
less than 0.035	7022.0	VIS 1
0.04	623.3	VIS ND1
less than 0.035	4.30 x 10 ⁺⁰⁴ Too Bright!	VIS BK-7
1.8"	ount Rate is over the instrument PSF,	Note: Source
	Download Output [TXT]	

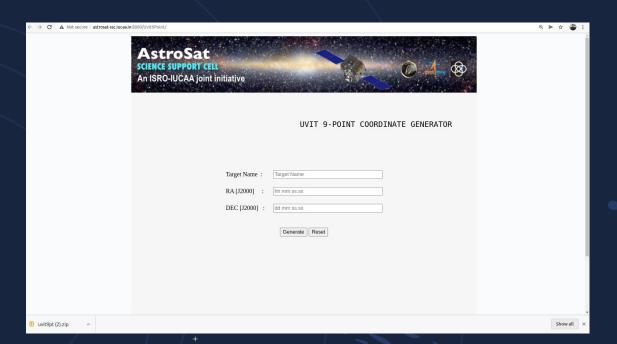


- This tool is useful to get an approximate value of count rate with AstroSat instruments SXT, LAXPC, CZTI and SSM.
- One should have prior knowledge of some parameters with other instruments like XMM-Newton, RXTE, etc.
- Link: http://astrosat-ssc.iucaa.in:8080/WebPIMMS_ASTRO/index.jsp

← → C ▲ Not secure astrosat-seciucasin=3080/webPIMMS_ASTRO/Home sp	@ > ☆ 🐌 :
WebPIMMS for ASTROSAT Home Help About Contact	
WebPIMMS for ASTROSAT A Mission Count Rate Simulator Based on PIMMS 4.7d	
From: Select Instrument Input Energy Range: default	
Source: Flux Count Rate Redshift: 0	
Model Parameters Power Law Photon Index: Black Body Temperature kT: keV Therm. Bremss. Temperature kT: keV APEC Solar Abundance Ratio: 0.2 \circ LogT keV : 5.60 0.0343 \circ	
Note: * If Flux/Unabsorbed flux' option is selected in the "From" box, a range should be entered in the "Input Energy Range" box. eg. 3-6	

From:	CHANDRA/HRC-S Count Rate ~	Input Energy Range:	default	Units	● keV ○ Angstroms
То:	SWIFT/XRT/PC Count Rate SWIFT/XRT/WT Count Rate	Output Energy Range:	default		
	SWIFT/XRT/PD Count Rate				
	SWIFT/UVOT/UVW2 Count Rate				
	SWIFT/UVOT/UVW1 Count Rate				
	SWIFT/UVOT/UVM2 Count Rate		Redshift: 0		
	SWIFT/UVOT/U Count Rate				
	SWIFT/UVOT/B Count Rate				
	SWIFT/UVOT/V Count Rate		Intrinsic		
	SWIFT/UVOT/UGRISM Count Rate		nH (cm-2) 0		
	SWIFT/UVOT/VGRISM Count Rate		:		
	SWIFT/UVOT/WHITE Count Rate				
	XMM/MOS Thin Count Rate 15 region				
	XMM/MOS Med Count Rate 15 region	<u>Parameters</u>			
	XMM/MOS Thick Count Rate 15 region	Photon Index :		7	
	XMM/PN Thin Count Rate 15 region				
	XMM/PN Med Count Rate 15 region	Temperature kT :		keV	
	XMM/PN Thick Count Rate 15 region				
	XMM/RGS1 Count Rate	Temperature kT :		keV	
	XMM/RGS2 Count Rate	Solar Abundance Rati	o: 0.2 ×		
	O AI LO				
		LogT keV : 5.60 0.0	343 ∨		

			Home	Help	About	Contact	
	V	/ebPIMMS for A A Mission Count Rate 5 Based on PIMMS	Simulator	DSAT			
From:	XMM/PN Thin Count Rate 15 r	Range:	0-10.0			Units	o keV Angstroms
To:	ASTROSAT/LAXPC	Output Energy Range:	0-80.0			Units	o keV Angstroms
	counts/s) Galactic nH (cm ⁻²): Model	Intrir nH (cm-2	0				
	O Power Law	Photon Index : 1.5					
	O Black Body	Temperature kT :					
	O Therm. Bremss.	Temperature kT : keV					
		Solar Abundance Ratio :	0.2 ~				
	O APEC	Solal Abulidance Ratio .	0.2				



WebPII	MMS for ASTROSA	λT						
			н	ome	Help	About	Contact	
	V		S for AST Count Rate Simu on PIMMS 4.7d	lator	SAT			
From:	XMM/PN Thin Count Rate 15	region V Ener	gy 4.0-10	.0			Units	o keV O
To:	ASTROSAT/LAXPC	V Ener Rang	gy 3.0-80	.0			Units	keV O
	Source: Flux Count Rate (ergs/cm²/s) 50 OR Counts/s) Galactic Count		Redshift: Intrinsic nH (cm ⁻²):	0				
	Model	Parameters						
	O Power Law	Photon Index : Temperature k keV				J		
	○ Therm. Bremss.	Temperature k	т :					
	O APEC	Solar Abundand LogT keV : 5						

WebPIMMS for A	ASTROSAT				
		Home	e Help	About	Contac
	Web PIMMS f	or ASTROS	SAT - F	Result	
INPUTS:					
	From	: xmm pn thin			
	Instrument	: astrosat lax	ос		
	Input Energy	: 4.0-10.0	keV		
	Output Energy	: 3.0-80.0	keV		
	Source : Count	Rate: 50 counts/s			
	Galactic nH	: 0.47e22 cm-	2		
	Redshift	: 0			
	Intrinsic nH				
	Model	: Power Law			
	Photon Index	: 1.5			
OUTPUTS:					
	* For power law model with photo	n index = 1.5000; NF	H = 4.700E+2	21	
	and 5.000E+01 cps in XMM PN TH				
	%!% Pile-up corrected PATTERN=	0-4 rate in 5 arcmin	region assu	ımed	
	(Internal model normalization = 1.	895E-01)			
	* PIMMS predicts 2.581E+02 cps v	vith ASTROSAT LAX	(PC20 (3.00	0- 80.000ke\	/)
	PIMMS >				
Download the above output as a PD	F file				
Back					
- Commonweal				_	

- Check for bright sources that may be harmful to the UVIT.
- It scans 9-point around a desired target.
- Link: http://astrosat-ssc.iucaa.in:8080/Uvit9Point/

UVIT 9-point coordinate generator

est only		
AstroSat		
SCIENCE SUPPORT CELL		
An ISRO-IUCAA joint initiative	Service and the service of the servi	

UVIT 9-POINT COORDINATE GENERATOR

Target Name : GRS1915+105

19 15 11.6 DEC [J2000] : 10 56 44

RA [J2000] :

Generate Reset

GRS1915+105_1 19 15 11.60 +10 56 44.00 GRS1915+105_2 19 14 44.72 +10 50 07.93 GRS1915+105 3 19 15 38.49 +10 56 43.93 GRS1915+105_4 19 14 44.71 +10 56 43.93 GRS1915+105 5 19 15 38,50 +11 03 19,93 GRS1915+105_6 19 14 44.70 +11 03 19.93 GRS1915+105_7 19 15 11.60 +10 50 08.00 GRS1915+105_8 19 15 11.60 +11 03 20.00 GRS1915+105 9 19 15 38.48 +10 50 07.93

Download File

UVIT 9-point coordinate generator script

- >> unzip uvit9pt.zip
- >> python uvit9pt.py
- Input: Target_name, RA, and Dec of source
- Output: Text file with name `Target_name_9pt.txt'

```
divyarawat@sysadmin-OptiPlex-5050:~/UVIT_bright_source_warning_tool$ unzip uvit9pt.zip
Archive: uvit9pt.zip
   creating: uvit9pt/
  inflating: uvit9pt/README.uvit9pt
   creating: MACOSX/
   creating: MACOSX/uvit9pt/
  inflating: MACOSX/uvit9pt/. README.uvit9pt
  inflating: uvit9pt/uvit9pt.py
divyarawat@sysadmin-OptiPlex-5050:~/UVIT bright source warning tool$ python2 uvit9pt/uvit9pt.pv
Target Name: GRS1915+105
RA [J2000] (hh mm ss.ss): 19 15 11.6
Dec [J2000] (+dd mm ss.ss): 10 56 44
Nine-point targets written in the file GRS1915+105 9pt.txt
divyarawat@sysadmin-OptiPlex-5050:~/UVIT_bright_source_warning_tool$ cat GRS1915+105_9pt.txt
GRS1915+105 1 19 15 11.60 +10 56 44.00
GRS1915+105 2 19 14 44.72 +10 50 07.93
GRS1915+105 3 19 15 38.49 +10 56 43.93
GRS1915+105 4 19 14 44.71 +10 56 43.93
GRS1915+105 5 19 15 38.50 +11 03 19.93
GRS1915+105 6 19 14 44.70 +11 03 19.93
GRS1915+105 7 19 15 11.60 +10 50 08.00
GRS1915+105 8 19 15 11.60 +11 03 20.00
GRS1915+105 9 19 15 38.48 +10 50 07.93
di warawatesysadmin-Onti Pley-5050; ~ /UVII brighdi warawatesysadmin-Onti Pley-5050; ~ /UVII brighdi warawatesysadmin-O
```

