Advanced AstroSAT data analysis workshop

Study of temporal and spectral behaviour of Blazar 1ES 0229+200

With

AstroSAT

Javaid Tantray, Hritwik Bora, Ajay Sharma, Dr. Zahir Shah

Jan 15th, 2023

<u>₩ Blazar</u>

- ***** AsatroSAT observatory
- ***** Blazar BL Lac
- ***** Blazar 1ES 0229+200
- ***** Results
- ***** Summary

Contents

What are the Active Galaxies and Normal Galaxies?

Normal Galaxy

It has a dormant SMBH at its center which is not accreting matter from it surroundings.

Active Galaxy

Active supermassive black hole at the center of galaxy, accreting matter from its surrounding due to its high gravitational field.

- A blazar is an AGN with a relativistic jet aligned to the line of site of observer. ullet
- Relativistic beaming of electromagnetic radiation from the jet makes blazar ulletappear much brighter.
- Highly variable source, often undergo rapid or dramatic fluctuation in \bullet brightness in short time scales (hours to days).
- Blazar also exhibit apparent superluminal motion. ullet

$$\begin{split} L_{app} &= \delta^4 L \\ \delta &= \gamma^{-1} / (1 - \beta cos \theta) \\ \beta_{app} &= \beta sin \theta / (1 - \beta cos \theta) \end{split}$$

***** Types of Blazars:

<u>BL Lacertae</u>	<u>Flat Spectrum I</u>
Featureless or absent emission lines in their spectra	Strong broad emission spectra
BL Lac objects are often divided two classes according to the position of the location of the peak in their spectral distribution	

Blazar

<u>Radio Quasar</u>

lines present in their

Properties of Blazar

lacksquarefrequency peak at radio-to-x-ray energies and a high-frequency peak at x-ray-to γ -gamma energies.

- Most of the radiation is emitted by non-thermal processes \bullet
- A. First hump is generally produced by the synchrotron process.
- B. Second hump: we have two possible models which are responsible for the 2nd hump.

Basic characteristics of blazars are double hump structure in their spectral energy distribution (SED), where lower-

Hadronic models

Type of Blazar

- * Based on the position of the first hump (synchrotron peak), we can further classify blazars into subgroups:
- Low-frequency peaked blazar.
- Intermediate-frequency peaked blazar.
- High-frequency peaked blazar.

AstroSAT observatory

***** Basic Details:

- 4FGL J2202.7+4216 \bullet
- Redshift : 0.069 \bullet
- Located at -> Ra : 330.68 Dec : 42.2778 \bullet
- Observed time duration : 11-07-2021 (29873 sec.) •

*Light curve

BL Lac

Start Time 19406 2:28:50:740 Stop Time 19407 12:35:30:740

1ES 0229+200

***** Basic Details :

- 4FGL J0232.8+2018 •
- Redshift : 0.14 ullet
- Located at -> Ra : 38.2026 Dec : 20.2882 \bullet
- Observed time duration : 2021-08-07 to 15-08-2021 •

***** SXT light curve:

Flux Distribution SXT light curve:-

Skewness and AD test values for normal and lognormal distribution.

skewness of sxt flux dist and error 3.7425208358822393 0.43133109281375365 skewness of sxt log-flux 1.322790813691468 0.43133109281375365

significance_level=array([15., 10., 5., 2.5, 1.])) AD test of sxt log flux AndersonResult(statistic=4.419114165671232, critical_values=array([0.559, 0.637, 0.764, 0.892, 1.061]), significance_level=array([15., 10., 5., 2.5, 1.]))

Double log normal distribution

- Log-normal distribution of the observed flux explain the emission processes to be of multiplicative rather than additive. ٠
- A log-normal flux distribution can directly hint the linkage of blazer jet with accretion phenomena. ٠
- Double log normal distribution suggest for two flux state even in quiescent state.

AD test of sxt flux dist AndersonResult(statistic=9.416713616957935, critical_values=array([0.559, 0.637, 0.764, 0.892, 1.061]),

• SXT spectral Analysis :-

SXT								
	Log Pa	arabola			Bro	ken Powei	Law	
α	β	Norm	$\chi^2_{\rm red}({ m dof})$	Γ_1	Γ_2	Ebreak	Norm	$\chi^2_{\rm red}({ m dof})$
$1.67^{+0.10}_{-0.10}$	$-0.29^{+0.19}_{-0.18}$	$0.002^{+0.00006}_{-0.00006}$	1.06 (69)	$1.60^{+0.06}_{-0.06}$	$1.10^{+0.22}_{-0.21}$	2.90	$0.002^{+0.00007}_{-0.00007}$	1.01 (69)

Unfolded Spectrum

SXT and LAXPC 20 light curve :-

Start Time 19434 10:20:03:734 Stop Time 19438 9:20:03:734

***** Spectral Analysis:

Astrosat SED :-

Unfolded Spectrum

Unfolded Spectrum

Astrosat

Broken Power Law					
	Γ_1	Γ_2	Ebreak	Norm	$\chi^2_{\rm red}({ m dof})$
	$1.49^{+0.04}_{-0.05}$	$1.98^{+0.21}_{-0.23}$	5.35	$0.003^{+0.0004}_{-0.0006}$	1.13 (84)

• SWIFT-XRT SED :

Unfolded Spectrum

Unfolded Spectrum

Swift-XRT

Broken Power Law					
Γ_1	Γ_2	Ebreak	Norm	$\chi^2_{\rm red}({ m dof})$	
$1.67^{+0.11}_{-0.11}$	$2.54^{+0.56}_{-0.47}$	2.96	$0.0003\substack{+0.00002\\-0.00002}$	0.84 (52)	

Combined spectral analysis of SXT and Swift-XRT:

Unfolded Spectrum

Swift-XRT and SXT

Broken Power Law					
	Γ_1	Γ_2	Ebreak	Norm	$\chi^2_{\rm red}({ m dof})$
	$1.63^{+0.07}_{-0.07}$	$1.55^{+0.09}_{-0.09}$	1.88	$0.002^{+0.00006}_{-0.00006}$	1.26 (123)

• Fermi-LAT SED :-

• Fermi-LAT light curve

Multi-wavelength lightcurve:

Fermi-LAT data					
	-				
		'			
	-				
+ SXT data					
+ LAXPC 20 data					
SWIFT-XRT data					
					_
• UVW2	<u></u>				

Multiwavelength spectral analysis :-

Model	const	ant<1>*TBab	s<2>*sscico	n<3>*bknp	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	No.: 1	1 Active/O
Model	Mode <u>l</u>	Component	Parameter	Unit	Value		
par	comp						
			Data g	roup: 1			
16	4	bknpo2	р		2.69753	+/-	2.46254E-02
18	4	bknpo2	q		6.61444	+/-	0.787539
21	4	bknpo2	norm		2.50980E-11	+/-	8.99718E-13
			Data g Data g Data g	roup: 2 roup: 3 roup: 4			
XSPEC	12>err	or 16 18					

Parameter	Confidence	Range	(2.706))	
16	2.65759	2.739	79	(-0.039942	5,0.0422599)
***Warning:	Parameter p	egged a	it hard	limit: 10	
18	5.75173		0	(-0.862715	,-6.61444)
########	+############	#######	+++++++++++++++++++++++++++++++++++++++	##########	4

			Data	n group: 4		
64	1	constant	factor		1.00000	frozen
65	2	TBabs	nH	10^22	0.0	frozen
66	3	sscicon	Gamma		20.5495	= p3
67	3	sscicon	В	G	1.04659	= p4
68	3	sscicon	Tedshift		0.140000	= p5
69	3	sscicon	Theta	deg	2.00000	= p6
70	3	sscicon	Size	log(cm)	16.5000	= p7
71	3	sscicon	fast_flag	0/1	1.00000	= p8
72	3	sscicon	BBtemp	K	1.00000E-40	= p9
73	3	sscicon	BBfrac		1.00000E-40	= p10
74	3	sscicon	slow_flic	0/1	0.0	= p11
75	3	sscicon	Но	(scale)	71.0000	= p12
76	3	sscicon	omegaM	(scale)	0.270000	= p13
77	3	sscicon	omega_l	(scale)	0.730000	= p14
78	3	sscicon	Jetpower	log(P)	0.0	= p15
79	4	bknpo2	р		2.69753	= p16
80	4	bknpo2	Ebr	keV	336.668	= p17
81	4	bknpo2	q		6.61444	= p18
82	4	bknpo2	Emin	keV	1.00000E-05	= p19
83	4	bknpo2	Emax	keV	5.32178E+07	= p20
84	4	bknpo2	norm		2.50980E-11	= p21

INSERT		
Fit statistic : Chi-Squared	1.50	using 3 bins, spectrum 1, group 1.
Chi-Squared	8.74	using 7 bins, spectrum 2, group 2.
Chi-Squared	1.65	using 4 bins, spectrum 3, group 3.
Chi-Squared	5e-11	using 1 bins, spectrum 4, group 4.
Total fit statistic	11.88	with 12 d.o.f.
Test statistic : Chi-Squared	11.88	using 15 bins.

Null hypothesis probability of 4.55e-01 with 12 degrees of freedom

• Literature survey :

13 year fermi-LAT observation

• We need your suggestions to move forward with this source and others

Thank you everyone Thank you Astrosat workshop