Optics Transmission and Detectors' QE of UVIT on AstroSat

ARRAY DEPLOYMENT

Doors are closed until 6 weeks after reaching the orbit to minimize contamination

> UVIT Twin Telescope

K. Sankarasubramanianon behalf of Stalin &UVIT team

Ultra-violet Imaging Telescope (UVIT)

Transmission of Mirrors in UVIT

Transmission data of Primary and Secondary mirrors for FUV and NUV Mirrors of UVIT obtained by LEOS Team

Filters in UVIT

Slot No.	Filter Type	Thickness (mm)	Passband (nm)		
0	Block with Aluminium				
1	$CaF_2 - 1$	2.50	>125		
2	BaF ₂	2.40	>135		
3	Sapphire	2.00	>142		
4	Grating – 1	4.48			
5	Silica	2.70	> 159		
6	Grating – 2	4.48			
7	$CaF_2 - 2$	2.50	>125		

FUV – FM Filter Wheel Configuration 130 – 180nm

VIS – FM Filter Whee Configuration (320 – 550nm)

	nm)	Slot No.	Filter Type	Thicknes s (mm)	Passband (nm)	l Materia		
NUV – FM Filter Wheel Configuration (200 – 300	neel - 300	0	Block with Aluminium					972-2
	- OC		Fused Silica	3.00	> 159			
	ter (2(2	NUVB15	2.97	200 - 230	Silica (UV	7)	
	Fil	3	NUVB13	3.15	230 - 260	Silica (UV	7)	
	FM rati	4	Grating	4.48				
	– F iau	5	NUVB4	3.33	250 - 280	Silica (UV	7)	
	UV Dnf	6	NUVN2	3.38	275 - 285	Silica (UV	7)	
	ZŎ	7	Fused Silica	3.30	> 159			
		Slot No.	Filter Type	Thickness	5 (mm)	Passband (nm)	Mate	erial
		0	Block with Aluminium					
/heel		1	VIS 3	3.00		400 - 530	UB	K 7
		2	VIS 2	3.00		370 - 410	UB	K 7
		3	VIS 1	3.00		320 - 360	UB	K 7
		4	Neutral Density Filter	3.00				
		5	BK7 Window	3.00				

Filters Characterization on ground

Spatial Transmission Variation
 Spectral Transmission Variation

Spatial & Spectral Transmission Experiment

Principle:

•Image of the filter illuminated by a monochromatic source

•Ratio of the image with and without filter provides the spatial non-uniformity in the filter

•Central wavelength of the filters is used to estimate the spatial variation

Same experiment is used to estimate the spectral transmission
Above procedure was repeated for different wavelength with the Monochromator

Ref: FM_UVIT_Filter_Calibration Ver 1.1 June 2012

Spatial Transmission - Example

Spatial Transmission Results - FUV

Filter Slot No.	Filter Name	Waveleng th (nm)	Exp. Time (Sec)	PTV	Max.	Min.	RMS	Requirement (Uniformity)	Remarks
4	CaF2-1	180.0	2.0	0.080 (1.5%)	0.922	0.842	0.003	~ ± 10%	Complied
3	BaF2	180.0	3.0	0.096 (2.0%)	0.914	0.819	0.005	~ ± 10%	Complied
2	Sapphire	180.0	3.0	0.098 (1.7%)	0.815	0.716	0.006	~ ± 10%	Complied
6	CaF2-2	180.0	2.0	0.096 (3.0%)	0.924	0.828	0.004	~ ± 10%	Complied
0	Silica	180.0	3.0	0.085 (1.0%)	0.907	0.822	0.004	~ ± 10%	Complied

After 15 pix Gaussian filtering to include 3.3mm beam size and 2mm drift

Spatial Transmission Results - NUV

Filter Slot No.	Filter Name	Waveleng th (nm)	Exposure Time (Sec)	PTV	Max.	Min.	RMS	Requirement (Uniformity)	Remarks
6	Silica3.0	300.0	2.0	0.093 (5.0%)	0.976	0.883	0.005	~ ± 10%	Complied
7	NUVB15	214.0	2.0	0.180	0.220	0.040	0.016	$\sim \pm 10\%$	
0	NUVB13	244.0	2.0	0.121 (4.5%)	0.739	0.618	0.008	~ ± 10%	
2	NUVB4	264.0	2.0	0.103 (3.6%)	0.750	0.647	0.007	~ ± 10%	Complied
3	NUVN2	280.0	2.0	0.101 (4.0%)	0.750	0.648	0.009	~ ± 10%	Complied
4	Silica3.3	300.0	2.0	0.105 (5.0%)	0.989	0.884	0.005	~±10%	Complied

After 15 pix Gaussian filtering to include 3.3mm beam size and 2mm drift

Spatial Transmission Results - VIS

Filter Slot No.	Filter Name	Wavelength (nm)	Exposure Time (Sec)	PTV	Max.	Min.	RMS	Requirement (Uniformity)	Remarks
3	VIS1	340.0	0.75	0.120	0.770	0.651	0.015	$\sim \pm 10\%$	Refer (3)
2	VIS2	390.0	1.0	0.096	0.883	0.786	0.009	$\sim \pm 10\%$	Complied
1	VIS3	470.0	3.0	0.118	1.001	0.883	0.007	$\sim \pm 10\%$	Refer (3)
5	BK7	420.0	1.5	0.097	0.970	0.873	0.006	$\sim \pm 10\%$	Complied
4	NDF	420.0	1.5	0.193	1.016	0.823	0.004	~ ± 10%	Refer (4)

Spectral Transmission Results - FUV

Spectral Transmission Results - NUV

-2.1nm

6

ted

5

points:

g

Dat

<u>Measured;</u>

ш Ш

0

σ

literatu

cted

ĥ

e:

Line

olid

Ś

(offset)

Spectral Transmission Results - VIS

Dashed Line: Measured Data points: Shifted by -2.5nm (offset) Solid Line: Expected (literature/vendor)

Quantum Efficiency of Detectors - Experiments

Calibration tests were carried out to measure:

- 1. QE of the FUV detector
- 2. QE of the NUV detector
- 3. QE of the VIS detector

The QE measurement for each detector involves two steps:

1. Measurement of the number of photons detected by the detector

2. Measurement of the total number of photons falling on the detector surface

Both these tests need the same experimental conditions to be maintained

Same experimental setup is used with and without hole mask (to reduce light by 0.1% to not to saturate FM detectors); While UVIT FM detectors were used with hole mask, standard NIST diode is used without hole mask

Quantum Efficiency of Detectors - Results

Quantum Efficiency of Detectors - Results

The Mirror, Filter Transmissions and QE of detectors are used in estimating the Effective areas of UVIT at all the wavelengths of the filters.

Effective Area Curves

Wavelength (A)

Effective Area = Product of QE, the transmissions of optics, the reflectivity, and un-blocked area of the telescope