SSM Calibration Ground & Onboard Calibration Aspects

M.C. Ramadevi, SAG, URSC

AstroSat Calibration Meeting

23 Aug 2022

Instrument Details Position sensitive Porpotional counters with 1D coded mask for imaging

Detector
Gas mixture
Gas pressure
Anode wire
Cathode wire
Anode diameter
Cathode wire diameter
Cell size
Operating Voltage
Window
Window thickness

Position-sensitive gas proportional counter 25% Xe + 75% P-10 800 torrCarbon coated quartz Gold-coated tungsten 25 microns 75 microns $1.2 \times 1.25 \text{ sq_cm}$ 1500 Volts Aluminized Mylar 25 microns

- To detect and locate transient X-ray sources
- Wide field 1-D coded-mask imaging
- 3 almost identical SSM units
- Mounted on a rotating platform
- FOV of each SSM ~ 100 x 20 sq deg

- Caldb includes
 - Calibration constants Position Charge Ratio Relation

 - Anode Response along the length
 - Edge effects
 - **Collimator Response**

Position Resolution along the anode (8 anodes in each SSM unit)

- Caldb includes

 - Anode Response along the length
 - Edge effects
 - **Collimator Response**

Calibration constants - Position - Charge Ratio - Relation Position Resolution along the anode (8 anodes in each SSM unit)

Calibration Constants Position - Charge Ratio Relation

- pattern
- Charge Ratio mapped against Position
- Fitted with $G(x) = \frac{p^{x}+q}{x+r}$
- To obtain p,q,r as the calibration constants

Anode Ratio Histogram - obtained experimentally with coded-mask

Using the calibration constants, position of every event recorded in SSM is obtained and binned to get the Detector Position Histogram

Anode Ratio Histogram

- **Deriving the calibration constants**
- ARH (x);difference of two sigmoidal functions
- S(x)=a1/(1+exp(-(x-b1)/c1))-a2/ (1+exp(-(x-b2)/c2))
- Multiple of such functions (S(x)) are used to fit the ratio distribution of anode wire A1 obtained by shining X-ray gun through coded mask on SSM FM2 detector. As there are 14 openings the function used will be

S(x)=S1(x)+S2(x)+....+S14(x)

Figure shows the ratio distribution with sigmoidal fit.

Charge Ratio - vs- Position

- Charge Ratio mapped with Position
- Fitted with g(x) a function
- $G(x)=(p^{*}x+q)/(x+r)$
- This gives the calibration constants for one anode which are p,q and r
- The same is repeated for all 8 anodes to derive the calibration constants for every SSM unit

- Caldb includes
 - Calibration constants Position Charge Ratio Relation
 - unit)
 - Anode Response along the length
 - Edge effects
 - Collimator Response

Position Resolution along the anode (8 anodes in each SSM

Position resolution (SSM1)

Position resolution (FWHM(mm))

Position resolution (Ground Calibration)

Anode wire Cathode wire <wire-module

- Caldb includes
 - Calibration constants Position Charge Ratio Relation

 - **Anode Response along the length**
 - Edge effects
 - **Collimator Response**

Position Resolution along the anode (8 anodes in each SSM unit)

Anode Response (Ground Calibration)

- Detector plane is illuminated with X-ray source uniformly
- Anode responses for one of the flight model Ratio vs normalised counts
- Edges of the anode have lower gains and hence the efficiency of recording a photon drops at the edges
- Central dip is due to the calibration wire at the mechanical centre of the anode wire

Source peak at the expected location; Pixel size 6 mm at 2 m height corresponds to 12 arcmin angular resolution.

Onboard Calibration Imaging with SSM Temporal data - SSM1 - Orbit 210

Source incident

- X-ray sources
- CXB
- Earth in FOV
- Charge Particles
- Scattered Photons from S/C and SSM elements

Counts

- Instrument aspects
- Calibration constants position estimates
- **Position Resolution**
- Anode Response
- Edge Effects
- Shift in central dip + broadening overtime

SSM Time (s)

Crab observed vs expected shadow

Onboard Imaging with SSM - crowded fields Light Curve Hardness Ratio **GRS 1915+105 observations** 0.9 0.8 Hardness Ratio 0.7 00 00 0.6 0.0184 20 0.0164 ٥ 0.5 0.0144 SAA 0.0124 AngY, deg (South Atlantic 0.4 0.0104 Anamoly) 0.0084 0.0064 0.3 0.0044 189000 190000 191000 192000 193000 194000 188000 0.0024 SSM Time (sec)

[•] GRS 1915+105 at (-1,-25) in SSM1 FOV

Flux for sources in crowded fields

- larger flux variation
- depends on the number of sources
- also no.of bright sources in the FoV

SSM GRS observations plotted with MAXI observations of GRS

SSM Observations of GRS 1915+105

SSM Observations of a binary pulsar 4U0115+63

Light curves of bright sources (~few hundred mCrab) are being studied from all observations

Detector Gain Variations

Ground Simulations

Hardness Ratio and count rate as an indicator of Gain change - studies carried out pre-launch

2

2.5

Detector Gain Variations SSM2 Gain Changes onboard

Hardness Ratio with time for all three SSM units

\odot 0 1600 1700 1800 1900 2000 2100 2200 Orbit number SSM2-HR SSM1-HR SSM3-HR 0 0

Hardness Ratio with time for all three SSM units

Hardness Ratio

SSM2 Gain Changes onboard

Hardness Ratio

Orbit number

Present Status

- SSM2 switched OFF
- OFF
- SSM3 operating as before slight gain change observed
- studied from all observations

SSM1 reduced HV and reduced efficiency - almost close to Switch

Light curves of bright sources (~few hundred mCrab) are being

Abhilash on Detailed onboard Calibration

Ravishankar on Onboard Image Processing aspects

Thank You

Over to

Followed by