

UVIT safety check tools

Divya Rawat AstroSat Science Support Cell, IUCAA

UVIT Bright Source Warning Tool

Gives a list of all the bright visible stars in the field of a given target.
Link: https://uvit.iiap.res.in/Software/bswt

Home Science	Instrument ▼	Calibration 🔻	Observing ▼	Publications V	Software 🔻	Downloa	ds Int	ranet
	Brig	ht Source	Warning	Tool			Softwar	e
			5				Obs Plann	ing: VIS
					v 2.0	0.0	Obs Plann	ing: UV
							► Exposu	ire Calculator
		Field Co	oordinates				v Bright	Source Warnin
Coordinate Type	Equator	ial (J2000)					BSWT	Help
	○ Galactio	:					► Timest	amp Conversion
Eq. Coordinates	19 58 21	67, 35 12 5.76					Observ	ng
Source Name	HD 2268						Preparatio	ins
	Resolve]					Proposal S	Submission
							Planning 1	ōols
							Data Stat	JS
Primary Instrument	UVIT 🗸]					Data Arch	ive
			-				Astrosa	t
		Submit	Reset				Astrosat V	Vebsite (ISRO)
							Astrosat V	Vebsite (IUCAA)
				Anand Maitrey, Yuvraj	Harsha, Annapumi		Science S	upport
		Web Interface:	Rekhesh Mohan				Astrosat a	t ISSDC
							Outreach	

UVIT Bright Source Warning Tool

lome	Science	Instrument V	Calibration	♥ Observing ♥	Publications V	Software 🔻	Downlo	ads
								1
		Brig	ht Sourc	e Warning	Tool			Soft
								Obs F
								Obs F
						v 2.	0.0	► Ex
Inpu	t Values							
		Src Coords (RA	Decl) (19:58	3:21.67, 35:12:5.76)	deg			T BI
		Primary Instr	ument UVIT		-			Tool
		Primary instr	ument ovii					1
Outp	out							► Ti
R4 · 19 ·	58.21.67	DEC:35:12:5.76						Obs
		imal:RA>299.590	302 DEC>35.	201599				Obs
299.24			.256 1.119					Prepa
299.76			.014 0.161					Propo
299.31	1058 35	5.10326 10	.784 1.345					
299.91			.639 0.544					Plann
299.66			.568 0.228					Data
299.37		5.06476 11	.195 0.482					
299.34			.566 0.321					Data
299.36			.061 0.368					
299.34			.829 0.149					Asti
299.56			.018 0.432					A
299.77			.015 0.251					Astro
299.28			.927 0.962					Astro
299.58 299.34			.643 0.399 .163 0.468					Scien
299.34			.163 0.468					scien
299.78			.392 0.903					Astro
299.02			.388 0.142					Outrea
299.52			084 0.009					
299.73			.085 1.410					
299.64			.148 0.484					
299.35			.636 0.314					
299.66			.073 0.306					
299.36			271 0.424					
299.70	609 35	5.35433 9.1	548 1.246					
299.59	033 3	5.20161 8.	909 0.689					
299.65	372 34	4.95538 11	.115 0.347					
299.71	1518 35	5.49776 6.	998 0.021					
299.51			.614 -0.216					
299.45			928 0.218					
299.64			.464 0.133					
299.89			.253 0.419					
299.31			.668 1.131					
299.47			.962 0.363					
299.59			.033 0.519					

ds	Intranet	
So	ftware	
Obs	Planning: VIS	
	Planning: UV	
	Exposure Calculator	1. 10
	Bright Source Warning	
	BSWT Help	
▶ 1	Timestamp Conversion	
Ob	serving	100
Prep	parations	Se 105.
Prop	posal Submission	
Plan	nning Tools	
Dat	a Status	Rest.
Dat	a Archive	1.1
As	trosat	1
Astr	rosat Website (ISRO)	10 C
Astr	rosat Website (IUCAA)	
Scie	ence Support	
Astr	rosat at ISSDC	
Outr	each	1.00
	Astrosat at ASI-POEC	
	Picture of the Month	
	Astrosat on Facebook	

99.43646	35.20876	10.869	0.111
99.27997	35.17303	9.728	0.155
99.71710	35.10518	9.539	0.232
99.98871	35.21306	12.492	0.162
99.66150	35.06923	8.853	-0.034
99.44580	35.13369	11.279	0.434
afe Count	limit for FUV: 1500		
afe Count	limit for NUV: 1500		

```
FUVCaF2-1 FUVCaF2-1 : Field Is NOT SAFE For Observation ~ ~
```

```
FUVCaF2-2 FUVCaF2-2 : Field Is NOT SAFE For Observation \sim \sim
```

```
FUVBaF2 FUVBaF2 : Field Is NOT SAFE For Observation \sim \sim
```

```
FUVSapphire : Field Is NOT SAFE For Observation \sim \sim
```

```
FUVSilica
```

FUVSilica : Field Is SAFE For Observations, provided no GALEX Bright source Total Counts: 2188.337128

```
NUVSilica : Field Is NOT SAFE For Observation \sim \sim
```

```
NUVB4 $ NUVB4 : Field Is NOT SAFE For Observation \sim \sim
```

```
NUVB13 NUVB13 : Field Is NOT SAFE For Observation \sim \sim
```

```
NUVB15 NUVB15 : Field Is NOT SAFE For Observation \sim \sim
```

NUVN2 NUVN2 : Field Is NOT SAFE For Observation \sim \sim

SEARCHING FOR BRIGHT SOURCES in GALEX GR7

No GALEX FUV Bright stars in the field

```
No GALEX NUV Bright stars in the field
```

Download Output [TXT] [PDF]

Return to User Inputs

- To Check whether a field can be safely observed with UVIT VIS/FUV/NUV filters.
- The VIS channel is primarily used for the spacecraft tracking.
- Output of VIS filter checking tools is mandatory for UVIT observations.
- Link to filter checking tools: <u>https://github.com/prajwel/canuvit#readme</u>.
- >> pip install canuvit
- >> canuvit -h

- To Check whether a field can be safely observed with UVIT VIS/FUV/NUV filters.
- The VIS channel is primarily used for the spacecraft tracking.
- Output of VIS filter checking tools is mandatory for UVIT observations.
- Link to filter checking tools: <u>https://github.com/prajwel/canuvit#readme</u>.
- >> pip install canuvit
- >> canuvit -h

divyarawat@sysadmin-OptiPlex-5050:~\$ canuvit -h Usage: canuvit [OPTIONS]

Program to check if a given coordinate can be safely observed using UVIT.

Example usage: canuvit -r "13:12:14" -d "-14:15:13"

Options:

all	Check safety for all filters. [default:
	True]
vis	Check saftey for only visible filters.
UV	Check safety for only UV filters.
-r,ra RA	Right ascension of the coordinate. Format:
	hh:mm:ss[.ss] e.g. "00:54:53.45" [required]
-d,dec DEC	Declination of the coordinate. Format:
	[-]dd:mm:ss[.ss] e.g. "-37:41:03.23".
	[required]
<pre>-i,instrument [uvit sxt czti</pre>	laxpc]
	Instrument to check for. [default: uvit]
-v,verbose	Increase output verbosity.
version	Show the version and exit.
-h,help	Show this message and exit.
divyarawat@sysadmin-OptiPlex-5050:	:\$ []

>> canuvit -r "source RA" -d "source Dec" "source ,RA" is Right ascension of the coordinate in hh:mm:ss[.ss] "source Dec" is Declination of the coordinate in [-]dd:mm:ss[.ss]

divvar@ravva-HP-Notebook:~\$ canuvit -r "12:12:12" -d "12:12:12"

Payload: uvit, Coordinates: 12 12 12, 12 12 12

VIS

0

ra_hms	dec_dms	mag	B-V	SpecTyp	e	VIS3	VIS2	VIS1	ND1	BK7	
12:11:5	2.7568	+12:07:	47.532	11.096	0.864	К1	1333.0	124.4	88.6	29.7	1624.9
12:12:2	2.944	+12:17:	23.856	11.126	0.814	KO	1296.7	121.0	86.2	28.9	1580.0
12:11:3	5.016	+12:12:	04.644	11.426	0.451	F5	1457.4	234.9	180.9	32.8	1915.2
12:11:0	1.656	+12:08:	35.916	11.874	0.694	G5	754.3	89.1	69.2	16.8	950.9
12:11:1	1.5272	+12:03:	14.04	12.177	0.322	FO	803.1	143.5	101.4	18.2	1061.
12:12:0	5.5368	+12:19:	89.768	12,268	0.787	KO	452.9	42.3	30.1	10.1	552.1

Safe filters: ['VIS3', 'VIS2', 'VIS1', 'ND1', 'BK7']

Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-xd-mcat.fits.gz (100.00% 22s

FUV observations seem to be absent! Using M fuv = M nuv - 1.65. Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img GI6 001011 GUVICS011-nd-int.fits.gz 41s

16M/ 16M (100.00%)

NUV

sl_no	ra_hms	dec_dms	Mag	Mag_corrected	silica	b4	b13	b15	n2
	12:12:32.3946	+12:07:27.4144	19.32	19.32	1.86	0.41	0.50	0.14	0.10
	12:11:11.6503	+12:03:14.7794	16.25	16.25	31.75	6.99	8.57	2.35	1.75
	12:12:41.0882	+12:14:58.2679	16.15	16.15	34.66	7.63	9.36	2.56	1.91
4	12:12:15.3493	+12:29:18.1277	19.50	19.50	1.59	0.35	0.43	0.12	0.09
	12:11:35.0116	+12:12:04.7063	16.47	16.47	25.93	5.70	7.00	1.92	1.43

Safe filters in NUV: ['Silica', 'NUV-grating', 'NUV-B4', 'NUV-B13', 'NUV-B15', 'NUV-N2']

The UVIT ~20 arc-minute field of view can have potential bright objects that can trigger a BOD.

Due to offsets relative to UVIT : (1) SXT : primary instrument search 25 arc min around TOI and (2) LAXPC: primary instrument search for 28 arc min around TOI.

divyar@ravya-HP-Notebook:~\$ canuvit -r "12:12:12" -d "12:12:12

Payload: uvit, Coordinates: 12 12 12, 12 12 12

VIS

0

ra_hms dec_dr	ns mag	B-V	SpecTyp	e	VIS3	VIS2	VIS1	ND1	BK7	
12:11:52.7568	+12:07	:47.532	11.096	0.864	К1	1333.0	124.4	88.6	29.7	1624.9
12:12:22.944	+12:17	:23.856	11.126	0.814	KØ	1296.7	121.0	86.2	28.9	1580.6
12:11:35.016	+12:12	:04.644	11.426	0.451	F5	1457.4	234.9	180.9	32.8	1915.2
12:11:01.656	+12:08	:35.916	11.874	0.694	G5	754.3	89.1	69.2	16.8	950.9
12:11:11.5272	+12:03	:14.04	12.177	0.322	FØ	803.1	143.5	101.4	18.2	1061.7
12:12:05.5368	+12:19	:09.768	12.268	0.787	KO	452.9	42.3	30.1	10.1	552.1

Safe filters: ['VIS3', 'VIS2', 'VIS1', 'ND1', 'BK7']

Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_00101_GUVICS011.xd-mcat.fits.gz 6.3.W/G.3M (100:00%) 22s

FUV observations seem to be absent! Using M_fuv = M_nuv - 1.65.

Downloading http://galex.stsci.edu/data/GR7/pipe/01-vsn/26011-GI6_001011_GUVICS011/d/01-main/0007-img/07-try/GI6_001011_GUVICS011-nd-int.fit.gz | 6(M/ 16M (160.00%) 41s

NUV

sl_no	ra_hms	dec_dms	Mag	Mag_corrected	silica	b4	b13	b15	n2
	12:12:32.3946	+12:07:27.4144	19.32	19.32	1.86	0.41	0.50	0.14	0.10
	12:11:11.6503	+12:03:14.7794	16.25	16.25	31.75	6.99	8.57	2.35	1.75
	12:12:41.0882	+12:14:58.2679	16.15	16.15	34.66	7.63	9.36	2.56	1.91
	12:12:15.3493	+12:29:18.1277	19.50	19.50	1.59	0.35	0.43	0.12	0.09
	12:11:35.0116	+12:12:04.7063	16.47	16.47	25.93	5.70	7.00	1.92	1.43

Safe filters in NUV: ['Silica', 'NUV-grating', 'NUV-B4', 'NUV-B13', 'NUV-B15', 'NUV-N2'

The filters for which the count rates are lesser than 1500 in both NUV and FUV are safe for observations.

FUV

sl_no	ra_hms	dec_dms	Mag	Mag_corrected	caf2	baf2	sapphire	silica
1	12:12:32.3946	+12:07:27.4144	19.32	17.67	1.65	1.40	1.04	0.36
2	12:11:11.6503	+12:03:14.7794	16.25	14.60	28.17	23.94	17.75	6.20
3	12:12:41.0882	+12:14:58.2679	16.15	14.50	30.75	26.14	19.37	6.76
4	12:12:15.3493	+12:29:18.1277	19.50	17.85	1.41	1.20	0.89	0.31
	12:11:35.0116	+12:12:04.7063	16.47	14.82	23.00	19.55	14.49	5.06

Safe filters in FUV: ['CaF2', 'FUV-grating', 'BaF2', 'Sapphire', 'Silica']

divyar@ravya-HP-Notebook:~\$

divyar@ravya-HP-Notebook:~\$ canuvit -r "19:15:11.6" -d "10:56:44" -i sxt

Payload: sxt, Coordinates: 19 15 11.6, 10 56 44

VIS

ra_hms dec_dm	smag B-V	SpecTy	pe	VIS3	VIS2	VIS1	ND1	BK7	
19:16:46.296	+10:58:45.984	8.2	-0.16	B5	49400.0	16200.0	11000.0	1179.0	76200.0
19:16:46.428	+10:58:46.74	8.259	0.197	A7	34700.0	6816.4	3733.0	793.6	45000.0
19:14:02.4984	+10:38:44.988	8.3	-0.01	AO	40700.0	10500.0	4130.9	950.0	53800.0
19:14:02.6232	+10:38:44.592	8.342	0.296	A9	29700.0	5666.7	3636.5	676.0	39200.0
19:16:21.1008	+11:05:34.296	9.312	0.44	F5	10200.0	1646.2	1267.7	230.2	13400.0
19:15:08.1456	+10:34:31.476	9.355	0.524	F8	8744.7	1230.7	987.3	195.9	11300.0
19:16:00.924	+10:37:12.576	9.382	0.343	F1	10500.0	1882.5	1330.7	239.0	13900.0

Safe filters: ['ND1']

WARNING! there exists 2.0 pair of bright stars which are closer than 10.0 arcseconds!

0 Galex tiles found. Galex observations around the given target is not available. Using TD1 catalogue to estimate UVIT count rates.

The galactic latitude is between -30 to 30. Your field cannot be checked using TD1 catalogue! Special cases UVIT FUV/NUV Filter Checking Tool
Special cases were discussed in last year webinar by Jayashree and Shah Alam.
Link: http://astrosat-ssc.iucaa.in/workshops

Astrosa

- Link: https://uvit/irap.res.
- Input: source type, magnitude/flux density, source coordinate 0
- Output: S/N, exposure time

e Science	Ins	trument 🔻	Calibration V	Observing v	Publications V	Software 🔻	Downloads	Intran
		Exp	osure Tir	ne Calcul	ator		s	oftware
		-					0	bs Planning
						v 2.	0.0	bs Planning
			-					Exposure
Cha		Enort	and Tune	ource				ETC Help
Sta	~	spect	A	1 • V •				Bright Sou
Black Bod	y ()							Timestam
Galax	УО	Ma	gnitude 💿	15.0 V 🗸	Band			
AGI	0	Flux	Density 🔿	3.5e-15 Ergs/	/s/cm^2/A ₩		c	Observing
Power Lav	v ()			At wavelength 33	00.0 A		Pr	reparations
Flat Spectrun	n O						Pr	oposal Sub
User Define	d 🔾						PI	anning Tool
Eq. Coordinat	tes	11.00.00	0.00, -16 00 00	0			Di	ata Status
		110000					D	ata Archive

E(B-V)	0	RV	3.1	
N _H Distance	0	E(B - V)	0.0	
Av	0			
			Backg	round
Dark counts	25			
			Out	put
		Noise Ratio O ne required O	FOR	Signal-to-Noise Ratio 5.0

Software
bs Planning: VIS
obs Planning: UV
* Exposure Calculator
ETC Help
Bright Source Warning Tool
Timestamp Conversion
Observing
reparations
roposal Submission
lanning Tools
Data Status

Intranet

١s	tr	0	s	a	t	

- Astrosat Website (ISRO) Astrosat Website (IUCAA) Science Support Astrosat at ISSDC Outreach Astrosat at ASI-POEC
 - Picture of the Month Astrosat on Facebook

-Source Star	0	Spectral Type				
Black Body	Ö	A	× 1 ×	V ~		
Galaxy	0	Magnitude 🚺	15.0			
AGN	0		15.0		Band	
Power Law	0	Flux Density	3.5e-15	Ergs/s/	cm^2/A ∽	Star
Flat Spectrum	0		At wavelength	3300.0	A	
User Defined						
	i Fran	Source Star Black Body	0 Te	mperature	6000.0 κ	
Black Body		Galaxy		lagnitude	• 15.0	V v Band
Allowed F	Range:	Power Law		IX Density	O 3.5e-15	Ergs/s/cm^2/A 🗸
0.0K to 10		Flat Spectrum	0		At wavelength	3300.0 A
		User Defined	0			

• Temperature of a blackbody decides the shape of its spectrum.

Source	1						
Star	0	Туре	Spi	iral Sc	~		
Black Body Galaxy	0 R	edshift	0.0	00			
AGN Power Law	O O Mag	nitude	0	15.0 V ~	Band	Galaxy	
Flat Spectrum User Defined	O Flux D	ensity	•	3.5e-15 Ergs/ At wavelength 3300.0	s/cm^2/A ✔		
	AGN			Star 💍	Туре	Seyfert 2 v	
	s of template ra: Liner, Seyf	ert 1,	•	Black Body 🔿 Galaxy 🔿 AGN 💿	Redshift	0.00	
Seyfe	ert 2, and QSC).		Power Law	Magnitude	■ 15.0 V ~ Ban	d
				Flat Spectrum O	Flux Density	3.5e-15 Ergs/s/cn At wavelength 3300.0	n^2/A ✔ A

Power Law

Eq. Coordinates	0	11 00 00.00, -16			Eq. Coordinate	0	11 00
User Defined	0			Ac wavelength 5500.0 A	Flat Spectrum User Defined		
Power Law Flat Spectrum	0	This belistry	0	3.5e-15 Ergs/s/cm^2/A ∨ At wavelength 3300.0 A	Power Law	0	
AGN	0	Flux Density	0		AGN	0	
	0	Magnitude	0	15.0 V V Band	Galaxy	0	-
Galaxy	0	Keushint	0.00		Black Body	0	Flu
Black Body	0	Redshift			Star	0	Ν
Star	\bigcirc	Index	-1.0		3. 20		

-	<u> </u>	00	
<u> </u>	.		
	Λ _		

Allowed range of α is -5 to

Star	0	Spectrum Upload	Choose file No file chosen
Black Body	0		Redshift 🗌 💭 Normalize
Galaxy	0		
AGN	0		
Power Law	0		
Flat Spectrum	0		
User Defined	0		

		Source
Star	0	
lack Body	0	Magnitude 💿 15.0 V 🗸 Band
Galaxy	0	Flux Density O 3.5e-15 Ergs/s/cm^2/A ¥
AGN	0	At wavelength 3300.0 A
ower Law	0	
Spectrum	0	
er Defined	0	
Coordinates		11 00 00.00, -16 00 00.0

Flat Spectrum

user-defined

user-defined

Star	0	Spectrum Upload	Choose file No file chosen
Black Body	0		Redshift 🗍 💭 Normalize
Galaxy	0		
AGN	0		
Power Law	0		
Flat Spectrum	0		
User Defined	0		

Ascii file format

# My source's	spectrum
#	
# Wavelength	Flux density
# (angstroms)	(ergs/s/cm^2/Å)
1370.10144043	3.97418026e-09
1441.79272461	5.91593765e-09
1502.95971680	9.01411200e-09
1569.54650879	1.03960225e-08
1642.30700684	1.38279651e-08
1722.14147949	1.42179048e-08
1810.13403320	1.73137944e-08

- Source Coordinate Format: (RA, decl) = "hh mm ss.ss, +/-dd mm ss.ss"
- Galactic Extinction parameter is calculated using relations:

 $E(B-V)= R_v = A_v / (E(B-V))$ $E(B-V) = A_B - A_v$

- N□ input units are 10²¹ cm⁻²
- Allowed range of N□ 0.00001 to 10000

Eq. Coordinates		11 00 00.00, -16 00 00.0				
			Galactic Extinction			
E(B-V)	\bigcirc	R _V	3.1			
N _H Distance	0	E(B - V)	0.0			
A _V	0					
			Background			
Dark counts	25					
			Background			

- Background Counts: The normal value ~ 25 counts per second which is detector noise,
- Proposer can provide larger one wants to consider other external contribution.

Parameter: Output

- Signal to noise ratio or
- Exposure time

Eq. Coordinates		11 00 00.00, -16	5 00 00.0			
Galactic Extinction						
E(B-V)		R _V	3.1			
N _H Distance	0	E(B - V)	0.0			
A _V	0					
			Background			
Dark counts	25					

Input for Galaxy M33

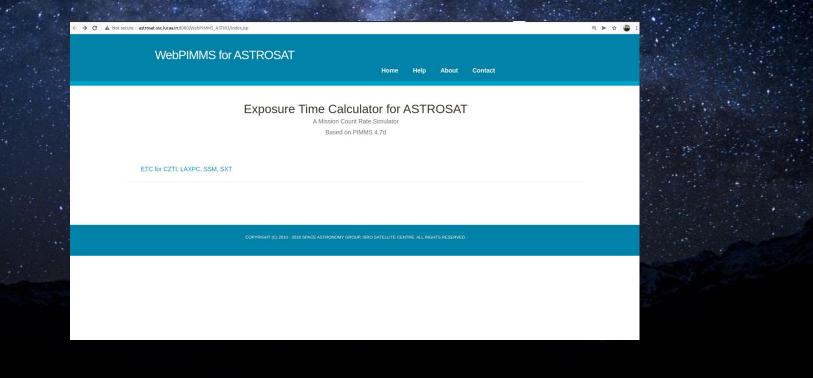
Dark counts

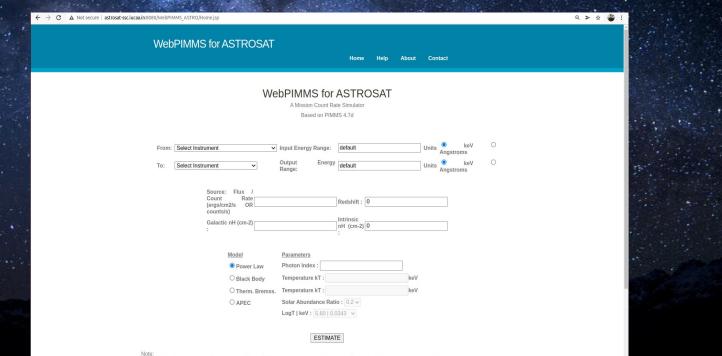
25

			Source
Star	0	Туре	Spiral Sc 🗸
Black Body	0	Redshift	0.0005
Galaxy	0		
AGN	0	Magnitude	● 5.28 V ∨ Band
Power Law	0	Flux Density	O 3.5e-15 Ergs/s/cm^2/A v
Flat Spectrum	0		At wavelength 3300.0 A
User Defined	0		
Eq. Coordinates		01 31 01.67, 30	24 14.898093977
			Galactic Extinction
E(B-V)	0	Rv	3.1
N _H		E(B - V)	0.114
Distance	0		
Av	0		
			Background

Submit

Reset


Output


	39 deg. (Lower limit is 30 deg.)	Galactic Latitude:
Exposure Time (s	Source count rate (s ⁻¹)	Filter
0.07	356.9	FUV CaF2-1
0.08	303.5	FUV BaF2
0.10	239.2	FUV Sapphire
0.26	97.82	FUV Silica
0.08	314.9	FUV CaF2-2
less than 0.035	3751.9	NUV Silica
0.32	78.33	NUV B15
less than 0.035	1174.0	NUV B13
less than 0.035	1473.2	NUV B4
0.07	335.5	NUV N2
less than 0.03	2.69 x 10 ⁺⁰⁴ Too Bright!	VIS 3
less than 0.035	8113.3	VIS 2
less than 0.035	7022.0	VIS 1
0.04	623.3	VIS ND1
less than 0.03	4.30 x 10 ⁺⁰⁴ Too Bright!	VIS BK-7

Download Output [TXT]

Return to User Inputs

- This tool is useful to get an approximate value of count rate with AstroSat instruments SXT, LAXPC, CZTI and SSM.
- One should have prior knowledge of some parameters with other instruments like XMM-Newton, RXTE, etc.
 - Link: http://astrosat-ssc.iucaa.in 8080/WebPIMMS_ASTRO/index.jsp

* - If 'Flux/Unabsorbed flux' option is selected in the 'From' box, a range should be entered in the 'Input Energy Range' box. eg. 3-6

From:	CHANDRA/HRC-S Count Rate	Input Energy Range:	default	Units	O keV	/ O Angstroms
То:	SWIFT/XRT/PC Count Rate SWIFT/XRT/WT Count Rate	Output Energy Range:	default			∕ ○ Angstroms
	SWIFT/XRT/PD Count Rate SWIFT/XRT/PD Count Rate SWIFT/UVOT/UVW2 Count Rate SWIFT/UVOT/UVW1 Count Rate SWIFT/UVOT/UCOUNT Rate SWIFT/UVOT/U Count Rate SWIFT/UVOT/V Count Rate SWIFT/UVOT/VGRISM Count Rate SWIFT/UVOT/VGRISM Count Rate SWIFT/UVOT/VGRISM Count Rate		Redshift : Intrinsic nH (cm-2) :			
	XMM/MOS Thin Count Rate 15 region XMM/MOS Med Count Rate 15 region XMM/MOS Thick Count Rate 15 region XMM/PN Thin Count Rate 15 region XMM/PN Med Count Rate 15 region XMM/PN Thick Count Rate 15 region XMM/RGS1 Count Rate XMM/RGS2 Count Rate	Parameters Photon Index : Temperature kT : Temperature kT : Solar Abundance Rati	0: 0.2 ∨	eV eV		

LogT | keV : 5.60 | 0.0343 ∨

WebPIMMS for ASTROSAT

		н	ome	Help	About	Contact	
	A Mission Cou	int Rate Simu	lator)SAT			
XMM/PN Thin Count Rate		4.0-10	0.0			Units	keV Angstro
ASTROSAT/LAXPC	Output	3.0-80	0.0			Units	keV Angstro
Source: Flux / Count Rate (ergs/cm²/s OR counts/s)			0)
Galactic nH (cm ⁻²) : 0.47e22		Intrinsic nH (cm ⁻²) :	0)
	dy Temperature kT : keV Temperature kT : keV Solar Abundance I	Ratio : 0.2					
	ASTROSAT/LAXPC Source: / Flux / Count Rate (ergs/cm ² /s) OR counts/s) Galactic nH (cm ⁻²): 0.47e22 Model Power La Black Bo Therm. Bremss.	A Mission Cou Based on XMM/PN Thin Count Rate 15 region Very Range: ASTROSAT/LAXPC Very Source: / Flux / Count Rate (ergs/cm ² /s) Galactic nH (cm ⁻²): 0.47e22 Model Parameters Power Law Photon Index : 1. Black Body Temperature kT keV Therm. Temperature kT keV APEC Solar Abundance I	WebPIMMS for AST A Mission Count Rate Simu Based on PIMMS 4.7d XMM/PN Thin Count Rate 15 region view input A.0-10 ASTROSAT/LAXPC view information Source: Flux / Count Rate 50 Count Rate 50 Redshift (erg.3) Galactic 0.47e22 nH (cm*2): 0.47e22 Model Parameters Power Law Photon Index : 1.5 Black Body Temperature kT : Black Body Temperature kT : Bremss. keV APEC Solar Abundance Ratio : 0.2	A Mission Count Rate Simulator Based on PIMMS 4.7d	WebPIMMS for ASTROSAT A Mission Count Rate Simulator Based on PIMMS 4.7d XMM/PN Thin Count Rate 15 region Input Energy Range: 4.0-10.0 ASTROSAT/LAXPC Output Fourput Fourput Fourput Galactic nH (cm*2): 0.047e22 Model Parameters Power Law Photon Index : 1.5 Black Body Temperature kT : keV Therm. Temperature kT : keV O APEC Solar Abundance Ratio : 0.2 v	WebPIMMS for ASTROSAT A Mission Count Rate Simulator Based on PIMMS 4.7d XMM/PN Thin Count Rate 15 region Input Energy Range: 4.0-10.0 ASTROSAT/LAXPC Output Energy Range: 3.0-80.0 Source: / / Flux / / Count Rate 50 ? (ergs/cm ² /s) 50 ? Galactic 0.47e22 Intrinsic nH (cm ⁻²): 0 Model Parameters 0 Power Law Photon Index : 1.5 Black Body Temperature kT : keV Therm, Temperature kT : . Bremss. keV . .0.2	WebPIMMS for ASTROSAT A Mission Count Rate Simulator Based on PIMMS 4.7d XMM/PN Thin Count Rate 15 region Input Energy Range: 4.0-10.0 Units ASTROSAT/LAXPC Output Energy Range: 3.0-80.0 Units Source: / / / / Flux / / 0 0 Source: / / / / Flux / / 0 0 Source: / / / 0 0 Galactic / 0 0 0 0 Model Parameters 0 0 0 0 0 Power Law Photon Index : 1.5 0

ESTIMATE

WebPIMMS for ASTROSAT	WebPIMMS for ASTROSAT
Home Help About Contact	Home Help About Contact
WebPIMMS for ASTROSAT A Mission Count Rate Simulator Based on PIMMS 4.7d	Web PIMMS for ASTROSAT - Result
From: XMM/PN Thin Count Rate 15 region Input Energy Range: 4.0-10.0 Units 0 keV Angstroms To: ASTROSAT/LAXPC Output Energy Range: 3.0-80.0 Units 0 keV Angstroms	From : xmm pn thin Instrument : astrosat laxpc Input Energy : 4.0-10.0 keV Output Energy : 3.0-80.0 keV Source : Count Rate : 50 counts/s Galactic nH : 0.47e22 cm-2 Redshift : 0 intrinsic nH : 0 cm-2 Model : Power Law : 2000 cm-2
Source: Flux / Count Rate (ergs/cm²/s 50 OR counts/s) Galactic nH (cm²): 0.47e22 nH (cm²): 0.47e22 n	Photon Index : 1.5 OUTPUTS: * For power law model with photon index = 1.5000; NH = 4.700E+21 and 5.000E+01 cps in XMM PN THIN (4.000- 10.000keV) %% Pile-up corrected PATTERN=0-4 rate in 5 arcmin region assumed (Internal model normalization = 1.895E-01) * PIMMS predicts 2.581E+02 cps with ASTROSAT LAXPC20 (3.000- 80.000keV) PIMMS >
Model Parameters O Power Law Photon Index : 1.5	Download the above output as a PDF file Back
Black Body Temperature kT : Therm. Temperature kT : Bremss. KeV APEC Solar Abundance Ratio : 0.2 LogT keV : 5.60 0.0343	

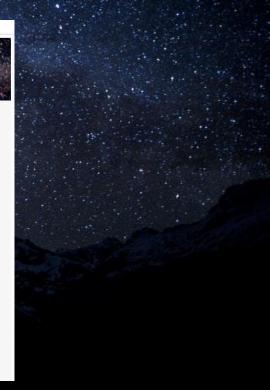
UVIT 9-point coordinate generator

- Check for bright sources that may be harmful to the UVIT.
- It scans 9-point around a desired target.
- Link: http://astrosat-ssc.iucaa.in:8080/Uvit9Point/

	A Not secure astrosat-ssc.iucaa	.in:8080/Uvit9Point/			Q > \$
		AstroSat SCIENCE SUPPORT CELL An ISRO-IUCAA joint initiative		018	
		-	UVIT 9-POINT COOF	NDINATE GENERATOR	
			2000) : hh mm ss.ss 2000) : dd mm ss.ss Generate Reset		
t ((2).zip ^				Sho

UVIT 9-point coordinate generator

9Point/


AstroSat science support cell An ISRO-IUCAA joint initiative

UVIT 9-POINT COORDINATE GENERATOR

Target Name :		GRS1915+105
RA [J2000]	:	19 15 11.6
DEC [J2000]	:	10 56 44

Generate Reset

 $\begin{array}{l} {\rm GRS1915+105_1} \ 19 \ 15 \ 11.60 + 10 \ 56 \ 44.00 \\ {\rm GRS1915+105_2} \ 19 \ 14 \ 44.72 + 10 \ 50 \ 07.93 \\ {\rm GRS1915+105_3} \ 19 \ 15 \ 38.49 + 10 \ 56 \ 43.93 \\ {\rm GRS1915+105_6} \ 19 \ 15 \ 38.50 + 11 \ 03 \ 19.93 \\ {\rm GRS1915+105_6} \ 19 \ 15 \ 44.70 + 11 \ 03 \ 19.93 \\ {\rm GRS1915+105_6} \ 19 \ 14 \ 44.70 + 11 \ 03 \ 19.93 \\ {\rm GRS1915+105_6} \ 19 \ 15 \ 11.60 + 10 \ 50 \ 08.00 \\ {\rm GRS1915+105_6} \ 19 \ 15 \ 11.60 + 11 \ 03 \ 00.00 \\ {\rm GRS1915+105_6} \ 19 \ 15 \ 38.48 + 10 \ 50 \ 07.93 \\ \end{array}$

UVIT 9-point coordinate generator script

a count O cure od

- >> unzip uvit9pt.zip
- >> python uvit9pt.py
- Input: Target_name, RA, and Dec of source
- Output: Text file with name `Target_name_9pt.txt'

divyarawat@sysadmin-OptiPlex-5050:~/UVIT_bright_source_warning_tool\$ unzip uvit9pt.zip	
Archive: uvit9pt.zip	
creating: uvit9pt/	
inflating: uvit9pt/README.uvit9pt	
creating:MACOSX/	
creating:MACOSX/uvit9pt/	
inflating:MACOSX/uvit9pt/README.uvit9pt	
inflating: uvit9pt/uvit9pt.py	
<pre>divyarawat@sysadmin-OptiPlex-5050:-/UVIT_bright_source_warning_tool\$ python2 uvit9pt/uvit9pt.py</pre>	
Target Name: GRS1915+105	
RA [J2000] (hh mm ss.ss): 19 15 11.6 Dec [J2000] (+dd mm ss.ss): 10 56 44	
Nine-point targets written in the file GRS1915+105 9pt.txt	
divyarawat@sysadmin-OptiPlex-5050:~/UVIT_bright_source_warning_tool\$ cat GRS1915+105 9pt.txt	
GRS1915+105 1 19 15 11.60 +10 56 44.00	
GRS1915+105 2 19 14 44.72 + 10 50 07.93	
CRS1915+105 3 19 15 38.49 +10 56 43.93	
CRS1915+105 4 19 14 44.71 +10 56 43.93	
GRS1915+105 5 19 15 38.50 +11 03 19.93	
GRS1915+105_6 19 14 44.70 +11 03 19.93	
GRS1915+105_7 19 15 11.60 +10 50 08.00	
GRS1915+105_8 19 15 11.60 +11 03 20.00	
GRS1915+105_9 19 15 38.48 +10 50 07.93	
divuarawat@cucadmin_OntiDlav_5050+_/IWTT_brinbdivuarawat@cucadmin_OntiDlav_5050+_/IWTT_brinbdivua	rawadiw

THANK YOU