PROP_ID	TITLE	ABSTRACT	Src Name Co-ord	Schedule Status
A10_002	ASTROSAT multi- epoch imaging survey of M31: high FUV sensitivity and FUV- variable sources	M31 is the nearest giant spiral galaxy for which we can study the stellar populations, X-ray sources, and supernova remnants. At a distance of 780 kpc, M31 is far enough away that the brightest stars are safe to observe with UVIT, yet close enough to obtain a good census of the the above populations. The high spatial resolution of UVIT is yielding outstanding data on the stellar populations, X-ray sources and supernova remnants of M31. The multi-wavelength images of M31 is forming a legacy dataset for study of the stellar populations of M31, it star formation history and the structure of the galaxy. For this proposal we are requesting to observe for a second epoch, with UVIT and the X-ray instruments, the bulge and the inner NE spiral arms of M31. The two goals are to obtain significantly higher sensitivity and to identify and study FUV variable sources.		Complete
A10_002	ASTROSAT multi- epoch imaging survey of M31: high FUV sensitivity and FUV- variable sources	M31 is the nearest giant spiral galaxy for which we can study the stellar populations, X-ray sources, and supernova remnants. At a distance of 780 kpc, M31 is far enough away that the brightest stars are safe to observe with UVIT, yet close enough to obtain a good census of the the above populations. The high spatial resolution of UVIT is yielding outstanding data on the stellar populations, X-ray sources and supernova remnants of M31. The multi-wavelength images of M31 is forming a legacy dataset for study of the stellar populations of M31, it star formation history and the structure of the galaxy. For this proposal we are requesting to observe for a second epoch, with UVIT and the X-ray instruments, the bulge and the inner NE spiral arms of M31. The two goals are to obtain significantly higher sensitivity and to identify and study FUV variable sources.		Complete
	ASTROSAT multi- wavelength observation of Short High phase of Her X- 1	star during the low states, and partially blocks the emission during short high state. The X-ray phase-dependent light curve is very different in main high, short high and low states. This is	Her X-1 16 57 49.810 35 20 32.399	Yet to be Scheduled

A10_007	Continued Long Duration Monitoring of the X-ray Bright Variable QSO PDS456	the complex behaviour of this and similar objects with a view to elucidating the underlying	PDS 456 17 28 19.901 -14 15 56.016	Yet to be Scheduled
A10_009	Bow Shocks around Asymptotic Giant Branch (AGB) Stars: U Hya and R Scl in the Ultraviolet	We propose to observe bow shocks around the runaway AGB stars, U Hya and R Scl. While both are detached shell sources, U Hya's far-IR detached shell (imaged with Herschel) appears to be coincident with the UV bow shock observed with GALEX. Detecting UV emission from R Scl where the far-IR bow shock and detached shell are well separated, would enable us to disentangle their contributions. With deeper exposures and the high spatial resolution of AstroSat, we will be able to 1) examine the spatial offset between the UV and far-IR emission regions, 2) investigate these emission mechanisms, and 3) study the clumps/instabilities and their advection into the bow shock tail. Combining multi-wavelength observations with detailed simulations will improve our understanding of how stellar material is processed on injection into the ISM, a crucial link in the cycle of gas and dust in galaxies.	R Scl 1 26 58.095 -32 32 35.438	Complete
A10_014	Searching UV counterparts of Ultra- luminous X-ray Sources in nearby galaxies	ULXs in M 51 and 5 in NGC 1407 and NGC 1399 each. They are well studied in X-ray band with Chandra and XMM Newton observations. Previous studies have shown a correlation	M 51 13 29 56.200 47 13 50.002	

A10_014	Searching UV counterparts of Ultra- luminous X-ray Sources in nearby galaxies	We propose a total of 13.8ks UVIT observation of M 51 (late-type galaxy), NGC 1399 and NGC 1407 (both early-type galaxy) to search for the UV counterpart of Ultraluminous X-ray sources (ULXs) in these galaxies in 120-180 nm (FUV) range of wavelength. Also, we would study the environments of ULXs in the far UV band as UVIT has excellent spatial resolution. There are 9 ULXs in M 51 and 5 in NGC 1407 and NGC 1399 each. They are well studied in X-ray band with Chandra and XMM Newton observations. Previous studies have shown a correlation between the overall star formation rate in a galaxy and the number of luminous X-ray sources. Our proposed observations will allow us to derive spatially-resolved star formation rates and establish if the ULXs preferentially reside in regions of strong star formation. We also expect the detection of short term UV variability from ULXs.	NGC 1399 3 38 29.026 -35 27 2.365	
A10_014	Searching UV counterparts of Ultra- luminous X-ray Sources in nearby galaxies	ULXs in M 51 and 5 in NGC 1407 and NGC 1399 each. They are well studied in X-ray band	NGC 1407 3 40 11.860 -18 34 48.400	
A10_016	Giant Low Surface Brightness Galaxies	Imaging of the GLSB galaxies UGC 6614 and NGC 1042 using UVI1, each with an exposure	UGC6614	Complete

A10_016	UVIT Observation of Giant Low Surface Brightness Galaxies UGC 6614 and NGC 1042	time of 2000 seconds in order to detect the faintest LIV regions and to study the star formation	NGC1042	Complete
A10_017	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_017	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_017	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled

				I
A10_017	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_017	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec		Partially Scheduled
A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec	NGC 1672 4 45 42.500 -59 14 49.852	Complete

A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	We request 240 ks of time to execute AstroSat UVIT observations of 10 nearby galaxies, revealing the population of newly formed massive stars. When combined with archival data, this study will yield a sample of 36 galaxies with complete ALMA, HST and AstroSat FUV data, from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) sample. ALMA maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec resolution. These AstroSat FUV data will provide essential constraints on the properties and feedback from the youngest clusters. We will use these data to measure the lifetimes of molecular clouds and clusters, making the first systematic measurements of how these key physical parameters are regulated by the conditions of the interstellar medium (ISM) and the local galactic environment	NGC 3351 10 43 57.700 11 42 13.702	Complete
A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	We request 240 ks of time to execute AstroSat UVIT observations of 10 nearby galaxies, revealing the population of newly formed massive stars. When combined with archival data, this study will yield a sample of 36 galaxies with complete ALMA, HST and AstroSat FUV data, from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) sample. ALMA maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec resolution. These AstroSat FUV data will provide essential constraints on the properties and feedback from the youngest clusters. We will use these data to measure the lifetimes of molecular clouds and clusters, making the first systematic measurements of how these key physical parameters are regulated by the conditions of the interstellar medium (ISM) and the local galactic environment	NGC 4298 12 21 32.760 14 36 22.201	Partially Scheduled
A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	We request 240 ks of time to execute AstroSat UVIT observations of 10 nearby galaxies, revealing the population of newly formed massive stars. When combined with archival data, this study will yield a sample of 36 galaxies with complete ALMA, HST and AstroSat FUV data, from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) sample. ALMA maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec resolution. These AstroSat FUV data will provide essential constraints on the properties and feedback from the youngest clusters. We will use these data to measure the lifetimes of molecular clouds and clusters, making the first systematic measurements of how these key physical parameters are regulated by the conditions of the interstellar medium (ISM) and the local galactic environment	NGC 4689 12 47 12 13 54 1.28	Complete

A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	We request 240 ks of time to execute AstroSat UVIT observations of 10 nearby galaxies, revealing the population of newly formed massive stars. When combined with archival data, this study will yield a sample of 36 galaxies with complete ALMA, HST and AstroSat FUV data, from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) sample. ALMA maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec resolution. These AstroSat FUV data will provide essential constraints on the properties and feedback from the youngest clusters. We will use these data to measure the lifetimes of molecular clouds and clusters, making the first systematic measurements of how these key physical parameters are regulated by the conditions of the interstellar medium (ISM) and the local galactic environment	NGC 5068 13 18 54.810 -21 2 20.800	Yet to be Scheduled
A10_021	PHANGS-AstroSat: Resolving the Effect of Galactic Environment on Cloud and Cluster Lifetimes with UVIT	We request 240 ks of time to execute AstroSat UVIT observations of 10 nearby galaxies, revealing the population of newly formed massive stars. When combined with archival data, this study will yield a sample of 36 galaxies with complete ALMA, HST and AstroSat FUV data, from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) sample. ALMA maps emission from the molecular gas that is the immediate reservoir from which stars form, while the HST data provide detailed information on star cluster properties, both at 1.5 arcsec resolution. These AstroSat FUV data will provide essential constraints on the properties and feedback from the youngest clusters. We will use these data to measure the lifetimes of molecular clouds and clusters, making the first systematic measurements of how these key physical parameters are regulated by the conditions of the interstellar medium (ISM) and the local galactic environment	NGC 6744 19 9 46.100 -63 51 27.101	Yet to be Scheduled
A10_024	ASTROSAT-UVIT follow-up observations of transient J221951- 484240	We request monthly Astrosat FUV monitoring of J221951-484240. Originally this source was a candidate to GW event S190930t, but HST spectroscopy shows this to be a very distant (and bright) source, likely a TDE or new quasar. We request monthly monitoring in two FUV filters for the A10 period. This will compliment our continuing observations by Swift and allow us to follow the slowly evolving spectral evolution from the optical through to the FUV.	GW Candidate Transient 22 19 51 -48 42 40	Complete
A10_028	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled

	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_028	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_028	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Swift J1822.3- 1606 18 22 18.00 -16 04 26.80	Yet to be Scheduled
A10_028	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Swift J1834.9- 0846 18 34 52.10 -08 45 56.00	Yet to be Scheduled

A10_029	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	CXOU J010043.1- 721 01 00 43.10 -72 11 34.00	Yet to be Scheduled
A10_029	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	CXOU J171405.7- 3810 17 14 05.70 -38 10 30.90	Yet to be Scheduled
A10_029	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_029	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled

A10_029		Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.		Yet to be Scheduled
A10_030	Broadband spectral and temporal studies of accretion-powered millisecond pulsars	Accreting millisecond (ms) X-ray pulsars (AMXPs) are a class of rapidly spinning neutron stars, which accrete matter from a low-mass stellar companion, and show coherent X-ray intensity variation during outbursts. AMXPs exhibit a large number of X-ray spectral and timing features, which make them ideal test beds for studying dense matter and strong gravity physics. AstroSat can meaningfully observe these sources only during outbursts. The fact that there is so far no report of the detection of accretion-powered ms pulsations with AstroSat makes it very compelling for this satellite to observe one of the accreting ms pulsars during its next outburst. Here we propose to observe the first source going into an outburst for a duration of 50 ks, from a list of six accretion-powered ms pulsars.	SAX J1808.4-3658 18 8 27.540 -36 58 44.299	Yet to be Scheduled
A10_030	Broadband spectral and temporal studies of accretion-powered millisecond pulsars	Accreting millisecond (ms) X-ray pulsars (AMXPs) are a class of rapidly spinning neutron stars, which accrete matter from a low-mass stellar companion, and show coherent X-ray intensity variation during outbursts. AMXPs exhibit a large number of X-ray spectral and timing features, which make them ideal test beds for studying dense matter and strong gravity physics. AstroSat can meaningfully observe these sources only during outbursts. The fact that there is so far no report of the detection of accretion-powered ms pulsations with AstroSat makes it very compelling for this satellite to observe one of the accreting ms pulsars during its next outburst. Here we propose to observe the first source going into an outburst for a duration of 50 ks, from a list of six accretion-powered ms pulsars.	XTE J1807-294 18 6 59.801 -29 24 29.988	Yet to be Scheduled
A10_030	Broadband spectral and temporal studies of accretion-powered millisecond pulsars	Accreting millisecond (ms) X-ray pulsars (AMXPs) are a class of rapidly spinning neutron stars, which accrete matter from a low-mass stellar companion, and show coherent X-ray intensity variation during outbursts. AMXPs exhibit a large number of X-ray spectral and timing features, which make them ideal test beds for studying dense matter and strong gravity physics. AstroSat can meaningfully observe these sources only during outbursts. The fact that there is so far no report of the detection of accretion-powered ms pulsations with AstroSat makes it very compelling for this satellite to observe one of the accreting ms pulsars during its next outburst. Here we propose to observe the first source going into an outburst for a duration of 50 ks, from a list of six accretion-powered ms pulsars.	IGR J17480-2466 17 48 5.000 -24 46 48.000	Yet to be Scheduled

A10_030	Broadband spectral and temporal studies of accretion-powered millisecond pulsars	Accreting millisecond (ms) X-ray pulsars (AMXPs) are a class of rapidly spinning neutron stars, which accrete matter from a low-mass stellar companion, and show coherent X-ray intensity variation during outbursts. AMXPs exhibit a large number of X-ray spectral and timing features, which make them ideal test beds for studying dense matter and strong gravity physics. AstroSat can meaningfully observe these sources only during outbursts. The fact that there is so far no report of the detection of accretion-powered ms pulsations with AstroSat makes it very compelling for this satellite to observe one of the accreting ms pulsars during its next outburst. Here we propose to observe the first source going into an outburst for a duration of 50 ks, from a list of six accretion-powered ms pulsars.	2455	Yet to be Scheduled
A10_031	Hunting for transitional millisecond pulsars with ASTROSAT	The recent discovery of millisecond pulsars that swing between an accretion-powered (X-ray) and a rotation-powered (radio) pulsar state proved the evolutionary link between low-mass X-ray binaries and millisecond radio pulsars, and showed that transitions between the two regimes can be observed over timescales as short as a few weeks. Observing future X-ray outbursts of transitional millisecond pulsars will tell us whether the transitional phase is possible only for some binaries, and what are the details of the disk-magnetospheric interaction. We propose a 60 ks ASTROSAT ToO observation to detect the transition to an accretion state of a millisecond pulsar, by searching for X-ray coherent pulsations. Candidates were selected among millisecond radio pulsars whose radio signal is irregularly eclipsed. The proposed observation will also measure the long-term spin evolution of the pulsar, and follow its correlated flux-spectral variability over the 0.3-80 keV band.	M28I	Yet to be Scheduled
A10_031	Hunting for transitional millisecond pulsars with ASTROSAT	The recent discovery of millisecond pulsars that swing between an accretion-powered (X-ray) and a rotation-powered (radio) pulsar state proved the evolutionary link between low-mass X-ray binaries and millisecond radio pulsars, and showed that transitions between the two regimes can be observed over timescales as short as a few weeks. Observing future X-ray outbursts of transitional millisecond pulsars will tell us whether the transitional phase is possible only for some binaries, and what are the details of the disk-magnetospheric interaction. We propose a 60 ks ASTROSAT ToO observation to detect the transition to an accretion state of a millisecond pulsar, by searching for X-ray coherent pulsations. Candidates were selected among millisecond radio pulsars whose radio signal is irregularly eclipsed. The proposed observation will also measure the long-term spin evolution of the pulsar, and follow its correlated flux-spectral variability over the 0.3-80 keV band.	XSSJ12270-4859	Yet to be Scheduled

F	10_031	Hunting for transitional millisecond pulsars with ASTROSAT	transitional millisecond pulsars will tell us whether the transitional phase is possible only for	47Tuc	Yet to be Scheduled
A	10_031	Hunting for transitional millisecond pulsars with ASTROSAT	The recent discovery of millisecond pulsars that swing between an accretion-powered (X-ray) and a rotation-powered (radio) pulsar state proved the evolutionary link between low-mass X-ray binaries and millisecond radio pulsars, and showed that transitions between the two regimes can be observed over timescales as short as a few weeks. Observing future X-ray outbursts of transitional millisecond pulsars will tell us whether the transitional phase is possible only for some binaries, and what are the details of the disk-magnetospheric interaction. We propose a 60 ks ASTROSAT ToO observation to detect the transition to an accretion state of a millisecond pulsar, by searching for X-ray coherent pulsations. Candidates were selected among millisecond radio pulsars whose radio signal is irregularly eclipsed. The proposed observation will also measure the long-term spin evolution of the pulsar, and follow its correlated flux-spectral variability over the 0.3-80 keV band.	Terzan5 17 48 05.00 -24 46 48.0	Yet to be Scheduled
Æ	10_031	Hunting for transitional millisecond pulsars with ASTROSAT	The recent discovery of millisecond pulsars that swing between an accretion-powered (X-ray) and a rotation-powered (radio) pulsar state proved the evolutionary link between low-mass X-ray binaries and millisecond radio pulsars, and showed that transitions between the two regimes can be observed over timescales as short as a few weeks. Observing future X-ray outbursts of transitional millisecond pulsars will tell us whether the transitional phase is possible only for some binaries, and what are the details of the disk-magnetospheric interaction. We propose a 60 ks ASTROSAT ToO observation to detect the transition to an accretion state of a millisecond pulsar, by searching for X-ray coherent pulsations. Candidates were selected among millisecond radio pulsars whose radio signal is irregularly eclipsed. The proposed observation will also measure the long-term spin evolution of the pulsar, and follow its correlated flux-spectral variability over the 0.3-80 keV band.	PSR 1723-2837	Yet to be Scheduled

A10_032	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_032	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_032	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} } G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_032	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} } G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled

A10_032	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_033	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_033	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_033	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled

A10_033	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_033	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{{13} } - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_034	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ¹ {13} - 10 ¹ {15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled
A10_034	Prompt study of magnetar outbursts with AstroSat	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10 ^{13} - 10 ^{{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	Yet to be Scheduled

A10_034	magneter outburste	Magnetars are strongly magnetized isolated neutron stars powered by the instabilities and decay of their huge magnetic field, 10^{13} - 10^{15} G. They show X-ray bursts, giant flares and large outbursts where the steady X-ray luminosity increases by several orders of magnitude and then decays in months/years. Observations performed during outbursts and flaring periods yield the largest amount of information on magnetars emission mechanisms, allowing to test the theoretical models on a variety of phenomena and source states. We propose to follow one outburst from a known or new magnetar (one trigger) with AstroSat to gather new physical insights on magnetars surface, field configuration and magnetosphere.	-	Yet to be Scheduled
A10_035	next transient X-ray	The globular cluster Terzan 5 contains numerous transient low-mass X-ray binaries. At least three of these have undergone X-ray outbursts over the past 15 years, showing a variety of intriguing behaviours. We propose a 40 ks AstroSAT observation of the next bright outburst from Terzan 5, to measure its X-ray energy spectrum, characterize its power spectrum, search for pulsations, and study any X-ray bursts that occur.	Terzan 5 17 48 04.80 -24 46 45	Yet to be Scheduled
A10_039	UV imaging of the stellar bridges in galaxy group NGC 4410	The NGC 4410 group is a nearby interacting system with four primary galaxies, having morphologies from giant elliptical to SBa, connected via two linear optical bridges. Undoubtedly, the group provides a unique opportunity to investigate tidally induced star-formation in early-type galaxies and the evolution of the group. Despite having a wealth of data, deep ultraviolet observation essential to understand ongoing star-formation is missing. We propose to obtain a deep far-UV observation of NGC 4410 group but also the bridges and the star-forming knots around. We plan to use proposed observation to search for recent tidal dwarf formation in and around the bridges. The deep FUV observation, along with archival multiwavelength, will be valuable for modeling the SED and constraining the star-formation history, and possibly the IMF of the bridges in the group.	NGC 4410C 12 26 35.498 9 2 7.667	Yet to be Scheduled
A10_042	3	the soft state, when the accretion disk and relativistic jets change significantly. We have	XTE_J1817-330 18 17 43.54 -33 01 07.8	Yet to be Scheduled

A10_042	Black Holes in Transition: A Legacy AstroSat Project - 1 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_**), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	GRO_J1655-40	Yet to be Scheduled
A10_042	Black Holes in Transition: A Legacy AstroSat Project - 1 of 3		Swift_J1658.2- 4242 16 58 12.64 -42 41 54.5	Yet to be Scheduled
A10_042	Black Holes in Transition: A Legacy AstroSat Project - 1 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_**), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	GX_339-4 17 02 49.36 -48 47 22.8	Yet to be Scheduled

	10 042	Black Holes in Transition: A Legacy AstroSat Project - 1 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_**), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	XTE_J1650-500	Yet to be Scheduled
, r	10_045	A UVIT view into the formation and evolution of Polar Ring Galaxies	star formation- disappears and which results in the formation of an elliptical galaxy. The lack of	NGC 660 01 43 02.40 13 38 42.20	Complete
	10_045	A UVIT view into the formation and evolution of Polar Ring Galaxies	star formation- disappears and which results in the formation of an elliptical galaxy. The lack of	MCG-05-07-001 02 28 20.11 -31 52 51.7	Complete

10_045	A UVIT view into the formation and evolution of Polar Ring Galaxies	galaxies. We carried out an initial study for 306 PRGs (identified to date) using the SDSS data and made a subsample of PRGs with extended polar structure. In this ASTROSAT proposal, we aim to observe 10 PRGs using the UVIT instrument onboard ASTROSAT and investigate the role of interaction in the formation of PRGs along with the evolution of PRGs.	16 39 51.43	Complete
10_045	formation and evolution of Polar	star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of	LEDA 37112 11 51 36.046	Complete
10_045	A UVIT view into the formation and evolution of Polar Ring Galaxies	star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of	UGC 5791 10 39 26.89 47 56 49.60	Complete

A10_04	A UVIT view into the formation and evolution of Polar Ring Galaxies	In the hierarchical model of galaxy evolution, Polar Ring Galaxies (PRGs) are considered as the connecting link between the ongoing mergers and the quiescent galaxies. Interaction between galaxies is considered as the formation mechanism that leads to the creation of PRGs. It is proposed that, as the PRGs evolve through time the polar ring structure- the active region of star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of galaxies. We carried out an initial study for 306 PRGs (identified to date) using the SDSS data and made a subsample of PRGs with extended polar structure. In this ASTROSAT proposal, we aim to observe 10 PRGs using the UVIT instrument onboard ASTROSAT and investigate the role of interaction in the formation of PRGs along with the evolution of PRGs.	Mrk 803 14 04 54.73 12 42 16.88	Complete
A10_04	A UVIT view into the formation and evolution of Polar Ring Galaxies	In the hierarchical model of galaxy evolution, Polar Ring Galaxies (PRGs) are considered as the connecting link between the ongoing mergers and the quiescent galaxies. Interaction between galaxies is considered as the formation mechanism that leads to the creation of PRGs. It is proposed that, as the PRGs evolve through time the polar ring structure- the active region of star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of galaxies. We carried out an initial study for 306 PRGs (identified to date) using the SDSS data and made a subsample of PRGs with extended polar structure. In this ASTROSAT proposal, we aim to observe 10 PRGs using the UVIT instrument onboard ASTROSAT and investigate the role of interaction in the formation of PRGs along with the evolution of PRGs.	UGC 9002 14 04 53.72 12 43 18.10	Complete
A10_04	A UVIT view into the formation and evolution of Polar Ring Galaxies	In the hierarchical model of galaxy evolution, Polar Ring Galaxies (PRGs) are considered as the connecting link between the ongoing mergers and the quiescent galaxies. Interaction between galaxies is considered as the formation mechanism that leads to the creation of PRGs. It is proposed that, as the PRGs evolve through time the polar ring structure- the active region of star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of galaxies. We carried out an initial study for 306 PRGs (identified to date) using the SDSS data and made a subsample of PRGs with extended polar structure. In this ASTROSAT proposal, we aim to observe 10 PRGs using the UVIT instrument onboard ASTROSAT and investigate the role of interaction in the formation of PRGs along with the evolution of PRGs.	LEDA 84268 14 41 19.18 07 47 34.78	Yet to be Scheduled

A10_045	A UVIT view into the formation and evolution of Polar Ring Galaxies	star formation- disappears and which results in the formation of an elliptical galaxy. The lack of deep photometric observation currently constrains our understanding of the evolution of	UGC 9562 14 51 14.41 35 32 32.1	Complete
A10_046	ASTROSAT observation of the fastest accreting millisecond pulsar IGR J00291+5934	spin-down, probably caused by magnetic dipole emission during quiescent periods or gravitational radiation from the fast spinning neutron star. The next outburst will allow us to	IGR J00291+5934 00 29 03.06 59 34 19.0	Yet to be Scheduled
A10_048	Assessing feedback and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	Requested observation: we request UVIT observations of the remaining 8 galaxies within the	NGC 0613 01 34 18.2 -29 25 06.6	Complete

A10_048	and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	Requested observation: we request UVIT observations of the remaining 8 galaxies within the MUSE TIMER sample which have optical JEL spectroscopy and complementary multi	NGC 1097 02 46 19.1 -30 16 29.6	Complete
A10_048	MUSE-TIMER galaxy	Context: The TIMER program uses VLT?s MUSE spectrograph to study the gas/stellar kinematics and energetics of nuclear rings in nearby galaxies. The impact of stellar feedback in fueling the galaxies? nuclear regions is unclear, as the brightest UV sources are poorly characterized. UVIT is well matched to MUSE resolution, allowing characterization of young ionizing sources in the galaxy centers. Requested observation: We request UVIT observations of the remaining 8 galaxies within the MUSE-TIMER sample which have optical IFU spectroscopy and complementary multi-wavelength photometry, but no highly resolved UV photometry. Objectives/Expected Scientific Results: Identification of sources with two UVIT filters in these galaxies provides a census of the stellar ionizing budget (crucial for modeling feedback-driven outflows), and constrains the recent SFH (<30 Myr; difficult from MUSE spectra alone) across the galaxy nuclear rings. This will provide a key test of how gas flows, SF, and feedback proceed and alter galaxies.	NGC 4981 13 08 48.7 -06 46 39.0	Yet to be Scheduled
A10_048	MUSE-TIMER galaxy sample	Context: The TIMER program uses VLT?s MUSE spectrograph to study the gas/stellar kinematics and energetics of nuclear rings in nearby galaxies. The impact of stellar feedback in fueling the galaxies? nuclear regions is unclear, as the brightest UV sources are poorly characterized. UVIT is well matched to MUSE resolution, allowing characterization of young ionizing sources in the galaxy centers. Requested observation: We request UVIT observations of the remaining 8 galaxies within the MUSE-TIMER sample which have optical IFU spectroscopy and complementary multi-wavelength photometry, but no highly resolved UV photometry. Objectives/Expected Scientific Results: Identification of sources with two UVIT filters in these galaxies provides a census of the stellar ionizing budget (crucial for modeling feedback-driven outflows), and constrains the recent SFH (<30 Myr; difficult from MUSE spectra alone) across the galaxy nuclear rings. This will provide a key test of how gas flows, SF, and feedback proceed and alter galaxies.	NGC 4984 13 08 57.2 -15 30 58.7	Yet to be Scheduled

A10_048	Assessing feedback and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	Context: The TIMER program uses VLT?s MUSE spectrograph to study the gas/stellar kinematics and energetics of nuclear rings in nearby galaxies. The impact of stellar feedback in fueling the galaxies? nuclear regions is unclear, as the brightest UV sources are poorly characterized. UVIT is well matched to MUSE resolution, allowing characterization of young ionizing sources in the galaxy centers. Requested observation: We request UVIT observations of the remaining 8 galaxies within the MUSE-TIMER sample which have optical IFU spectroscopy and complementary multi-wavelength photometry, but no highly resolved UV photometry. Objectives/Expected Scientific Results: Identification of sources with two UVIT filters in these galaxies provides a census of the stellar ionizing budget (crucial for modeling feedback-driven outflows), and constrains the recent SFH (<30 Myr; difficult from MUSE spectra alone) across the galaxy nuclear rings. This will provide a key test of how gas flows, SF, and feedback proceed and alter galaxies.		Yet to be Scheduled
A10_048	Assessing feedback and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	MUSE-TIMER sample which have optical IFU spectroscopy and complementary multi- wavelength photometry, but no highly resolved UV photometry.	NGC 7755 23 47 51.7 -30 31 19.2	Complete
A10_048	Assessing feedback and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	Requested observation: We request UVIT observations of the remaining 8 galaxies within the MUSE-TIMER sample which have optical IFU spectroscopy and complementary multi- wavelength photometry, but no highly resolved UV photometry.		Yet to be Scheduled

\10_048	Assessing feedback and recent star formation in nuclear rings with UVIT observations of the MUSE-TIMER galaxy sample	Requested observation: We request UVIT observations of the remaining 8 galaxies within the MUSE TIMER sample which have optical JEL spectroscopy and complementary multi-	IC 1438 22 16 29.1 -21 25 50.5	Complete
\10_049	To probe strong gravitational effect near the black hole in Seyfert galaxy 1H 0419-577	hole. We will take the advantage of simultaneous observation from SXT and LAXPC and	1H 0419-577 04 26 00.71 -57 12 01.77	Complete
A10_050	Far UV Spectroscopy of the Suspected Symbiotic Systems	Till recently, presence of high excitation lines in the ground based optical spectra was considered to be a standard way to detect and characterize the symbiotic systems. However, the recent detection of SU Lyn - an ordinary red giant from ground-based observations with no emission lines ? in X-ray opened a door to a new class of symbiotics. We have successfully utilized the UVIT-FUV grism spectra of SU Lyn, from the previous proposals, to firmly establish SU Lyn as a member of a new rare kind of accretion powered non-burning symbiotic. The success of UVIT-spectroscopy has encouraged us to use this method to characterize and determine the parameters of the sources whose symbiotic natures are in question. Here we propose UVIT-FUV grism spectroscopy of five suspected and one known symbiotic systems with exposure time of \$\sim\$10,000s each. These observations would be utilized for the Ph.D. research work of the PI.		Yet to be Scheduled

A	10_050	Far UV Spectroscopy of the Suspected	Till recently, presence of high excitation lines in the ground based optical spectra was considered to be a standard way to detect and characterize the symbiotic systems. However, the recent detection of SU Lyn - an ordinary red giant from ground-based observations with no emission lines ? in X-ray opened a door to a new class of symbiotics. We have successfully utilized the UVIT-FUV grism spectra of SU Lyn, from the previous proposals, to firmly establish SU Lyn as a member of a new rare kind of accretion powered non-burning symbiotic. The success of UVIT-spectroscopy has encouraged us to use this method to characterize and determine the parameters of the sources whose symbiotic natures are in question. Here we propose UVIT-FUV grism spectroscopy of five suspected and one known symbiotic systems with exposure time of \$\sim\$10,000s each. These observations would be utilized for the Ph.D.	IRAS 18067-2746 18 09 51.05 -27 46 00.69	Yet to be Scheduled
A	10_050	Far UV Spectroscopy of the Suspected	Till recently, presence of high excitation lines in the ground based optical spectra was considered to be a standard way to detect and characterize the symbiotic systems. However, the recent detection of SU Lyn - an ordinary red giant from ground-based observations with no emission lines ? in X-ray opened a door to a new class of symbiotics. We have successfully utilized the UVIT-FUV grism spectra of SU Lyn, from the previous proposals, to firmly establish SU Lyn as a member of a new rare kind of accretion powered non-burning symbiotic. The success of UVIT-spectroscopy has encouraged us to use this method to characterize and determine the parameters of the sources whose symbiotic natures are in question. Here we propose UVIT-FUV grism spectroscopy of five suspected and one known symbiotic systems with exposure time of \$\sim\$10,000s each. These observations would be utilized for the Ph.D. research work of the Pl.	EC 20504-2232 20 53 20.20 -22 20 47.00	Yet to be Scheduled
A	10_050		Till recently, presence of high excitation lines in the ground based optical spectra was considered to be a standard way to detect and characterize the symbiotic systems. However, the recent detection of SU Lyn - an ordinary red giant from ground-based observations with no emission lines ? in X-ray opened a door to a new class of symbiotics. We have successfully utilized the UVIT-FUV grism spectra of SU Lyn, from the previous proposals, to firmly establish SU Lyn as a member of a new rare kind of accretion powered non-burning symbiotic. The success of UVIT-spectroscopy has encouraged us to use this method to characterize and determine the parameters of the sources whose symbiotic natures are in question. Here we propose UVIT-FUV grism spectroscopy of five suspected and one known symbiotic systems with exposure time of \$\sim\$10,000s each. These observations would be utilized for the Ph.D. research work of the PI.	UCAC2 27827162 08 18 23.00 -11 11 38.94	Complete

A10_051	Black Holes in Transition: A Legacy ASTROSAT Project - 2 of 3	the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB	XTE_J1859+226	Yet to be Scheduled
A10_051	Black Holes in Transition: A Legacy ASTROSAT Project - 2 of 3	the soft state, when the accretion disk and relativistic jets change significantly. We have	4U_1630-472	Yet to be Scheduled
A10_051	Black Holes in Transition: A Legacy ASTROSAT Project - 2 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	4U_1543-475 15 47 08.6 -47 40 10.0	Yet to be Scheduled

,	A10_051	Black Holes in Transition: A Legacy ASTROSAT Project - 2 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	MAXI_J1348-630	Yet to be Scheduled
,	A10_053		large fraction of field BMD stors are found to be binaries with mostly circular orbits and long	BMP1 21 44 48.86 -63 22 11.0	Yet to be Scheduled
	A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP2 20 05 55.22 -59 17 11.9	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP4 19 53 04.02 -55 43 58.2	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP5 19 33 15.47 -54 58 52.0	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP6 21 42 42.45 -54 18 43.0	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwaff satellite galaxies. A	BMP10 21 47 29.24 -39 25 19.7	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP11 20 19 53.76 -38 56 36.2	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP13 23 38 07.84 -35 52 52.2	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP14 23 29 52.84 -35 13 04.4	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP15 23 55 21.35 -34 48 02.1	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP17 00 01 03.78 -33 48 15.9	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs of stars accreted from dwarf satellife galaxies. A	BMP19 03 19 35.36 -32 50 46.2	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwaff satellite galaxies. A	BMP20 23 28 29.73 -32 48 47.1	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP21 01 17 12.13 -32 26 58.0	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP23 00 50 15.88 -30 59 57.0	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP24 01 18 38.35 -30 41 02.9	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP27 14 34 23.16 -26 17 37.8	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP29 14 38 01.86 -24 58 44.7	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP32 14 38 26.80 -23 14 48.6	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs of stars accreted from dwarf satellite galaxies. A	BMP36 00 29 10.76 -19 10 07.8	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP37 00 35 50.96 -17 57 00.2	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP38 22 08 04.78 -15 35 27.8	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP40 03 14 53.78 -14 43 54.8	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	large fraction of field BMD stors are found to be binaries with mostly circular orbits and long	BMP42 01 10 56.41 -13 42 43.4	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP43 00 51 07.38 -11 08 31.9	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A	BMP44 00 52 11.48 -11 04 40.2	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs of stars accreted from dwarf satellife galaxies. A	BMP45 01 11 45.49 -10 40 03.9	Yet to be Scheduled
	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwaff satellite galaxies. A	BMP46 02 20 21.51 -10 38 09.2	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long	BMP49 07 30 41.45 24 05 06.6	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	large fraction of field BMP stars are found to be binaries with mostly circular orbits and long	BMP50 00 32 43.41 24 13 20.4	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long	BMP51 13 41 44.58 47 41 26.5	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long	BMP52 13 08 39.00 51 03 55.8	Yet to be Scheduled

A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	are thought to be post-mass transfer BSSs or stars accreted from dwaff satellite galaxies. A	BMP54 01 19 11.67 -19 23 58.13	Yet to be Scheduled
A10_053	Blue Metal poor stars: Are these field blue stragglers with detectable WD companion?	The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass. In star clusters, BSSs are easy to locate, whereas their identification in the Galactic field is non-trivial. Blue metal-poor (BMP) stars are bluer and more luminous MS stars than normal turn-off stars of metal poor Globular clusters. These BMP stars are thought to be post-mass transfer BSSs or stars accreted from dwarf satellite galaxies. A large fraction of field BMP stars are found to be binaries with mostly circular orbits and long periods, with an expected compact companion. There has not been any systematic study to search for WDs in these systems so far. Here, we propose to observe 45 BMP stars that are known/candidate binaries with chemical inhomogeneity, hence potential candidates for field BSSs. This study is expected to throw light on the formation pathways of field BSSs and BMP stars.	BMP55 23 43 38.58 -31 48 18.36	Yet to be Scheduled
A10_055	Study of first \$\ gamma\$-ray detected FR 0 galaxy Tol 1326- 379 using AstroSat	Radio galaxies have been divided into Fanaroff & amp; Riley (FR) I and FR II classes based on morphology. According to the unification scenario, FSRQs and BL Lacs are sub-classes of FR II and FR I galaxies, respectively. FR Is are relatively low luminous than FR IIs, and edge darkened. However, there exist few galaxies that are relatively radio weak than FR Is but more core-dominated and have jets contained within the host galaxies. These are classified as FR 0 galaxies. Fermi gamma-ray space telescope from its first four years of observations, detected one FR 0 galaxy, Tol 1326-379. Also, no other FR 0 galaxy has been detected in \$\gamma\$-ray band till date. To understand the radiative process in this source, we propose simultaneous observation of Tol 1326-379 with UVIT, SXT, and LAXPC detectors onboard AstroSat to construct the broadband spectra and to better understand the underlying physical processes.	Tol 1326-379 13 29 19.19 -38 14 18.5	Yet to be Scheduled

1	A10_056	Variability of the TeV	We propose observations of the TeV-detected blazar 1ES 2344+514 for 100 ks with UVIT, SXT, and LAXPC. The synchrotron peak of this so-called "extreme high-frequency peaked BL Lac object (EHBL)" is in the hard X-ray band. The goal of the proposed observation is to constrain the SED using the unique property of simultaneous broad-band coverage of AstroSat along with quasi-simultaneous observations at other wave bands, e.g., optical, GeV, and TeV. Another goal is to study the time variability of this extreme blazar exactly at its synchrotron peak energy in order to probe the nature of the highest energy part of the particle distribution in the jet. It has been proposed to be observed by MAGIC in its upcoming cycle. Modeling of the SEDs and variability will lead to useful constraints on the physical parameters of the jet, and mechanism(s) and location of emission of this relatively infrequently observed blazar.	23 47 04.00	Partially Scheduled
	A10_057	scales: UV views of interacting dwarfs in	Void region and request a total observing time of 82500 seconds. From UVIT observations we		Yet to be Scheduled
	A10_057	scales: UV views of interacting dwarfs in		J0723+3621 07 23 01.4 36 21 17.1	Complete

A10_057	scales: UV views of interacting dwarfs in	Void region and request a total observing time of 82500 seconds. From UVIT observations we	UGC 4426 08 28 28.6 41 51 27.0	Yet to be Scheduled
A10_057	scales: UV views of interacting dwarfs in	Void region and request a total observing time of 82500 seconds. From UVIT observations we	UGC 3860 07 28 17.7 40 46 11.3	Yet to be Scheduled
A10_057	scales: UV views of interacting dwarfs in	Void region and request a total observing time of 82500 seconds. From UVIT observations we	UGC 4722 09 00 24.1 25 36 53.3	Complete

A10	0_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO171	Yet to be Scheduled
A10	0_058	GASP jelly_x000C_fish galaxies	spatial variation of star formation in these systems as part of the GASP survey. Here we	JO85	Yet to be Scheduled
A10	0_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO160	Yet to be Scheduled

A10_058		Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JW56	Yet to be Scheduled
A10_058		Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO147	Yet to be Scheduled
A10_058	GASP jelly_x000C_fish	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO149	Yet to be Scheduled

A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies		JO95	Yet to be Scheduled
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO93	Yet to be Scheduled
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO200	Complete

A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO70	Yet to be Scheduled
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO69	Yet to be Scheduled
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	JO36	Yet to be Scheduled

A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	Complete
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	Yet to be Scheduled
A10_058	ASTROSAT survey of GASP jelly_x000C_fish galaxies	Galaxies with a morphology suggestive of ram pressure stripping found mostly in clusters are known as Jellyfish galaxies. The optical and H\$\alpha\$ imaging of these galaxies reveals tails of ionised gas up to 150 kpc long where new stars are born in knots and end up contributing to the intracluster light. The ongoing star formation in Jellyfish galaxies can be better understood in UV and making use of the spatial resolution of UVIT we have been quite successfully studying the spatial variation of star formation in these systems as part of the GASP survey. Here we propose to complete this survey by observing 15 jellyfish galaxies at redshift \$\sim\$ 0.05 for which we have data from ALMA,VLA and VLT/MUSE. The combined UVIT/SXT imaging data from the proposed observation will fill the gap in multi-wavelength data and shed more light into triggered star formation and galaxy evolution in dense environments.	Yet to be Scheduled

A	10_059		The correlated spectral and temporal properties of neutron star low-mass X-ray binaries (NS-LMXBs) vary on a variety of timescales ranges from hours to months. Fast time variability mainly characterised by the narrow and broad structures in the power density spectrum. The origin of the observed temporal variability components is still a controversial subject. Thus, it is crucial to understand whether the different kinds of temporal variability components arise due to the changes in the same spectral component or different ones and whether the same radiative process drives them or not. To understand this in detail, We propose simultaneous AstroSat and NICER monitoring observations of 4U~1735\$-\$44 and GX~340+0. For each of these sources, we request two 20 ks observations separated by a week. With these proposed observations, we will identify the different spectral states of the source and will perform correlated timing and spectral study in the broader energy band.	4U 1735-44 17 38 58.301 -44 27 0.000	Yet to be Scheduled
A	10_063	{\it AstroSat} observation of PG 1404+226 to reveal an outflowing accretion disk winds	source has never been found to set in previous cycles. It has been revealed from the observations conducted with other satellites, PG 1404+226 can be well studied for absorption features originating from the relativistic outflow of the accretion disk wind.\textbf{ {\it AstroSat} with simultaneous SXT and LAXPC exposure will allow us to explore the analysis and hence to	PG 1404+226 14 06 21.8899286041 22 23 46.515082049	Yet to be Scheduled
A	10_064	Disks and Tidal Arms	five more sources that are bright in GALEX FUV emission. There is already a significant amount of archival data for all our sources (SDSS-optical, archival Halpha, Galex). We will also	arp 273 02 21 30.6 39 21 58	Yet to be Scheduled

A10_064	Understanding Star Formation in the Disks and Tidal Arms of Closely Interacting Galaxies	five more sources that are bright in GALEX FUV emission. There is already a significant amount of archival data for all our sources (SDSS-optical, archival Halpha, Galex). We will also	arp 294 11 39 43.6 31 55 12	Yet to be Scheduled
A10_064	Understanding Star Formation in the Disks and Tidal Arms of Closely Interacting Galaxies	five more sources that are bright in GALEX FUV emission. There is already a significant	VV 304 19 18 30.0 -60 29 56	Yet to be Scheduled
A10_064	Understanding Star Formation in the Disks and Tidal Arms of Closely Interacting Galaxies	five more sources that are bright in GALEX FUV emission. There is already a significant amount of archival data for all our sources (SDSS-optical, archival Halpha, Galex). We will also	23 29 23	Yet to be Scheduled

,	10_065	Imaging very extended galaxy clusters selected from ROSAT	The tension between the cosmological parameters derived from the primary cosmic microwave background (CMB) and from cluster samples is a pressing issue. One possible discrepancy is likely the incompleteness of detected clusters is higher than estimated, and certain types of clusters or groups of galaxies were missed. The inaccuracy of the selection function will bias the corresponding mass function of galaxy clusters, and will further affect the cosmological parameter constraints. Recently, we have discovered a new set of 1308 extended clusters with flat profile by employing our state of art algorithm on the data of ROSAT All Survey (RASS). Here, we propose the 5 very extended galaxy clusters, with physical extension of more than 1 Mpc. The proposed ASTROSAT/SXT observations will not only enable us to understand the formation of extended diffuse X-ray clusters, but also explain the tension between cosmological parameter constraints.		Yet to be Scheduled
	10_067	Detailed Spectro- temporal Study and Characterization of the new broadband Emission in BL-Lac OJ 287	ongoing X-ray activity peaked in April 2020, and is predicted to continue till mid-2021. We	oj287	Partially Scheduled 1 time out of 4
,	10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC89 12 13 47.23 13 25 29.5	Yet to be Scheduled

A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC02	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC167	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC197	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

,	A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	A10_071	Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC2066 12 48 15.11 10 59 00.1	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC602	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC702	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC857 12 25 55.53 18 12 50.6	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC865 12 25 59.11 15 40 16.6	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC874 12 26 07.14 16 10 51.7	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star- forming systems. At the same time, we will explore the origin of the residual star formation	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1110	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1217	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1673 12 36 32.72 11 15 29.0	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1676	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1850	Yet to be Scheduled

,	A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
1		A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
		A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A10_071		We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC763 12 25 03.74 12 53 13.1	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1043	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1078 12 28 11.34 09 45 37.0	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1154 12 29 00.04 13 58 42.5	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1175 12 29 18.20 10 08 09.1	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster		VCC1179	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1412	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1524	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1630	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1632	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled

A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1978	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC2023	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.		Yet to be Scheduled

	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC67 12 12 48.46 13 58 34.4	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC157	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star- forming systems. At the same time, we will explore the origin of the residual star formation.	VCC227	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC979 12 27 11.68 09 25 13.8	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1013	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	VCC1114 12 28 33.75 08 38 24.6	Yet to be Scheduled

A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in starforming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled

A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_071	A UVIT Legacy Survey of the Virgo Cluster	We propose UVIT FUV imaging of a statistically representative sample of 100 galaxies in the Virgo Cluster, extracted from the VERTICO, VESTIGE and NGVS surveys. The sample spans wide ranges in stellar mass, morphological type and local density, targeting galaxies selected to probe key evolutionary processes occurring within the cluster environment. With this sample, we will study the physics of star formation activity down to ~100 pc scales, identify the dominant quenching mechanisms in a cluster environment and constrain the bright end of the IMF in star-forming systems. At the same time, we will explore the origin of the residual star formation activity observed in ellipticals, lenticulars and in the nuclei of early-type dwarfs and low-mass, post-merger remnants. Leveraging an unprecedented multi-wavelength dataset, our proposed UVIT data will provide the definitive resource for studying the UV properties of nearby cluster galaxies.	Yet to be Scheduled
A10_073	A Survey of Hard Intermediate Polars	We propose to use Astrosat to study eight relatively un-studied magnetic cataclysmic variables (CVs) of the intermediate polar (IP) subclass using all four Astrosat instruments. The requested observations will cover a fixed time block for each target. The observations will observe the FUV for the white dwarf and lower-energy accretion processes, and detect the spectrum from \$ {\sim}0.3-30\$ keV. The proposed study will be the first connecting the FUV to the soft and hard X-ray bands.	Complete
A10_073	A Survey of Hard Intermediate Polars	We propose to use Astrosat to study eight relatively un-studied magnetic cataclysmic variables (CVs) of the intermediate polar (IP) subclass using all four Astrosat instruments. The requested observations will cover a fixed time block for each target. The observations will observe the FUV for the white dwarf and lower-energy accretion processes, and detect the spectrum from \$ {\sim}0.3-30\$ keV. The proposed study will be the first connecting the FUV to the soft and hard X-ray bands.	Yet to be Scheduled

A10_073	A Survey of Hard Intermediate Polars	We propose to use Astrosat to study eight relatively un-studied magnetic cataclysmic variables (CVs) of the intermediate polar (IP) subclass using all four Astrosat instruments. The requested observations will cover a fixed time block for each target. The observations will observe the FUV for the white dwarf and lower-energy accretion processes, and detect the spectrum from \$ {\sim}0.3-30\$ keV. The proposed study will be the first connecting the FUV to the soft and hard X-ray bands.	11 43 38.3	Partially Scheduled
A10_073	A Survey of Hard Intermediate Polars	We propose to use Astrosat to study eight relatively un-studied magnetic cataclysmic variables (CVs) of the intermediate polar (IP) subclass using all four Astrosat instruments. The requested observations will cover a fixed time block for each target. The observations will observe the FUV for the white dwarf and lower-energy accretion processes, and detect the spectrum from \$ {\sim}0.3-30\$ keV. The proposed study will be the first connecting the FUV to the soft and hard X-ray bands.		Complete
A10_073	A Survey of Hard Intermediate Polars	We propose to use Astrosat to study eight relatively un-studied magnetic cataclysmic variables (CVs) of the intermediate polar (IP) subclass using all four Astrosat instruments. The requested observations will cover a fixed time block for each target. The observations will observe the FUV for the white dwarf and lower-energy accretion processes, and detect the spectrum from \$ {\sim}0.3-30\$ keV. The proposed study will be the first connecting the FUV to the soft and hard X-ray bands.	05 25 22.5	Complete
A10_062	An UVIT/FUV investigation of Bipolar and multipolar Planetary Nebulae and their halos, rings and jets.	morphology and emission characteristics reveal the history of mass ejection in AGB and early	NGC 6058 16 04 26.55 40 40 58.95	Yet to be Scheduled

A10_082	An UVIT/FUV investigation of Bipolar and multipolar Planetary Nebulae and their halos, rings and jets.	Our UVIT observations from the last 3 cycles, revealed that at least three bi-polar Planetary Nebulae (PNs) show large FUV structures, undetected in the optical and NUV images. These are attributed mainly due to molecular H\${\rm 2}\$ fluorescent emission from radiation of hot central star, or even collisionally excitation in few cases. This dramatic discovery suggests that large amount of molecular and neutral gas is hidden around the PNs. The study of the morphology and emission characteristics reveal the history of mass ejection in AGB and early PN phase of intermediate mass stars'' evolution. We propose to study some optically well-studied, bi-polar and multi-polar nebulae with different expansion ages and sizes, to study and establish systematic morphological and kinematical characteristics, and, to relate them to the highly ionized UV structures that represent shock interactions and hot bubbles emitting in He-II and C-IV.	PN Hb 5 17 47 56.20 -29 59 39.6	Yet to be Scheduled
A10_082	An UVIT/FUV investigation of Bipolar and multipolar Planetary Nebulae and their halos, rings and jets.	Our UVIT observations from the last 3 cycles, revealed that at least three bi-polar Planetary Nebulae (PNs) show large FUV structures, undetected in the optical and NUV images. These are attributed mainly due to molecular H\${\rm 2}\$ fluorescent emission from radiation of hot central star, or even collisionally excitation in few cases. This dramatic discovery suggests that large amount of molecular and neutral gas is hidden around the PNs. The study of the morphology and emission characteristics reveal the history of mass ejection in AGB and early PN phase of intermediate mass stars'∓#39; evolution. We propose to study some optically well-studied, bi-polar and multi-polar nebulae with different expansion ages and sizes, to study and establish systematic morphological and kinematical characteristics, and, to relate them to the highly ionized UV structures that represent shock interactions and hot bubbles emitting in He-II and C-IV.	Lan 384 21 23 09.3 38 58 11.0	Yet to be Scheduled
A10_082	An UVIT/FUV investigation of Bipolar and multipolar Planetary Nebulae and their halos, rings and jets.	marphology and omission characteristics reveal the history of mass direction in ACP, and early	PN KjPn 8 23 24 10.47 60 57 30.75	Yet to be Scheduled

A10_0	An UVIT/FUV investigation of Bipolar and multipolar Planetary Nebulae and their halos, rings and jets.	morphology and emission characteristics reveal the history of mass ejection in AGB and early	PN Hb 12 23 24 14.8 58 10 54.54	Yet to be Scheduled
A10_0	X-ray observation of nearby Black hole system QV Tel (HR 6819)	We propose observation to detect X-ray emission around the newly discovered near by blackhole HR 6819. This source may be similar to GRO J0422+32 which shows hard X-ray variability. The LAXPC instrument having a large effective area along with wide Field of View (FOV) of 1-deg x 1-deg gives us a great opportunity to explore the possible detection of X-ray emission from the HR 6819. Thus, we propose 4 observation of 10 ksec with a waiting period of 10 days for the possible X-ray emission detection from this blackhole source. As, we would like to explore the temporal and spectral properties of this source. This observation would be important to analyze as this could lead to a possible first X-ray emission detection from this source found by the AstroSat. The LAXPC will be the primary instrument for the AstroSat observations along with the SXT observing simultaneously, for a multi-wavelength study.		Yet to be Scheduled
A10_0	Far-UV Imaging Observations of 0 Galactic Planetary Nebulae with the UVIT	because the F 154W/F 169W/F 172W images allow us to directly estimate the spatial-distribution	NGC7009 21 4 10.815 -11 21 48.582	Yet to be Scheduled

A10_090	Far-UV Imaging Observations of Galactic Planetary Nebulae with the UVIT	because the F154W/F169M/F172M images allow us to directly estimate the spatial-distribution of the C $^{3+}\$ and N $^{2+}\$ abundances using the C{\sc iv}1548/50{\AA} and \$[\$N{\sc iii)\$1\$} 1745 55\ 0.4A} line images called extracted from these images. The obtaining C and N	NGC7662 23 25 53.600 42 32 6.000	Complete
A10_090	Far-UV Imaging Observations of Galactic Planetary Nebulae with the UVIT	of the C $^{3+}$ and N $^{2+}$ abundances using the C $,$ (sc iv), 1548/50, (AA) and $[N,]$	17 58 33.404 66 37 58.749	Partially Scheduled
A10_090	Far-UV Imaging Observations of Galactic Planetary Nebulae with the UVIT	because the F154W/F169M/F1/2W images allow us to directly estimate the spatial-distribution	-18 12 29.700	Yet to be Scheduled

A10_091	Simultaneous AstroSat (X-ray)/Optical studies of Black hole X-ray binaries	Co-ordinated multiwavelength campaigns on several Galactic black hole X-ray binaries have recently detected fast sub-second optical and infrared variability and remarkable multiwavelength timing correlations. The progress has been hindered, however, due to the paucity of availability of fast timing instruments with low deadtime. We propose to use the large area high time resolution X-ray instrument, AstroSat/LAXPC (3?80 keV) and combine it with our regular access to ULTRACAM on the NTT, and SALT that are capable of rapid optical observations, to surmount this hurdle. We propose strictly simultaneous observations with AstroSat and ground-based optical/infrared timing of anticipated outbursts in 3 black hole X-ray binaries. Simultaneous multi-wavelength observations performed during an outburst will probe rapid, subsecond photometric variations and search for inter-band time delays to disentangle the jet/disc/coronal components using spectral-timing. We propose total exposure time of 60 ks with AstroSat.	MAXI J1836-194 18 35 43.20 -19 19 10.5	Yet to be Scheduled
A10_093	A non-interacting red giant\$+\$black hole (?) binary: refining system parameters	sparse field stellar population.	2MASSJ05215658 +4359220 05 21 56.58 43 59 22.00	Complete

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		LMC-01 05 05 21.4429 -70 28 39.030	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-02 05 09 40.1997 -70 30 04.501	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-10 05 44 15.3506 -70 27 39.907	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-11 05 48 32.9806 -70 25 38.543	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-12 05 03 30.3538 -70 09 31.607	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-13 05 07 45.0044 -70 11 07.046	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-14 05 12 00.2212 -70 12 19.921	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		LMC-15 05 16 15.8553 -70 13 10.165	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 20 31.7519 -70 13 37.732	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 24 47.7596 -70 13 42.597	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 29 03.7222 -70 13 24.755	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-19 05 33 19.4878 -70 12 44.224	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-20 05 37 34.9020 -70 11 41.039	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-21 05 41 49.8135 -70 10 15.260	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 05 53.2625 -69 52 05.167	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 10 04.5256 -69 53 28.069	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	05 14 16.2586 -69 54 28.708	Yet to be Scheduled

,	A10_094	the Large Magellanic	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
	A10_094	the Large Magellanic	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
	A10_094	the Large Magellanic	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-36 05 04 04.8248 -69 32 59.061	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-37 05 08 12.2332 -69 34 31.680	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-38 05 12 20.1582 -69 35 42.396	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-39 05 16 28.4641 -69 36 31.149	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-40 05 20 37.0093 -69 36 57.897	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-41 05 24 45.6560 -69 37 02.618	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-42 05 28 54.2614 -69 36 45.306	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-43 05 33 02.6871 -69 36 05.978	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-44 05 37 10.7923 -69 35 04.667	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-45 05 41 18.4388 -69 33 41.425	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-47 05 49 31.8097 -69 29 49.452	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	the Large Magellanic	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-50 05 10 27.4092 -69 16 51.435	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-51 05 14 32.0482 -69 17 50.305	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-52 05 18 36.9837 -69 18 27.508	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-53 05 22 42.0823 -69 18 43.014	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-54 05 26 47.2096 -69 18 36.810	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-55 05 30 52.2315 -69 18 08.901	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-56 05 34 57.0138 -69 17 19.310	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-57 05 39 01.4236 -69 16 08.079	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-58 05 43 05.3289 -69 14 35.267	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-59 05 47 08.5998 -69 12 40.951	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-60 05 04 37.2883 -68 56 26.063	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-64 05 20 41.9586 -69 00 18.041	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-65 05 24 43.6756 -69 00 22.625	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-66 05 28 45.3547 -69 00 05.813	Yet to be Scheduled

A10_094	Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094		We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-71 05 48 48.7381 -68 53 21.868	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.		Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-74 05 14 46.9269 -68 41 11.765	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-75 05 18 45.1508 -68 41 47.913	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-76 05 22 43.5239 -68 42 02.979	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-77 05 26 41.9234 -68 41 56.951	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-78 05 30 40.2262 -68 41 29.834	Yet to be Scheduled

A10_094	Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled
A10_094	the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	Yet to be Scheduled

A10_094	A first-look Astrosat/UVIT FUV.Silica survey of the Large Magellanic Cloud	We request UVIT/FUV.Silica mapping of a wide area in the LMC, spanning diverse stellar populations and clusters. Safety is ensured by GALEX not-yet-public, spatially-complete recalibrated imaging. Hot stars drive the chemical and dynamical evolution of galaxies, and interstellar dust cycles. They are uniquely traced and characterized by FUV-imaging and the Magellanic Clouds are the closest, benchmark laboratory to study stellar evolution at low metallicity. A FUV.Silica LMC survey will secure a long-needed 1?-resolution FUV map of this key galaxy. It will reach hot-stars down to intermediate spectral types, and probe hot evolved objects for the first time. Critical FUV constraints, added to existing Swift/NUV coverage, and to ample ground-based new surveys data, will yield unique information to identify and characterize the hottest stars, to constrain stellar and galaxy evolution and interstellar extinction. Only Astrosat/UVIT can fill this critical gap in our multi-wavelength view of the LMC.	LMC-82 05 46 30.0308 -68 36 11.141	Yet to be Scheduled
A10_096	Black Holes in Transition: A Legacy ASTROSAT Project - 3 of 3	submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB	MAXI_J1820+070 18 20 21.95 07 11 07.30	Yet to be Scheduled
A10_096	Black Holes in Transition: A Legacy ASTROSAT Project - 3 of 3		Swift_J1357.2- 0933 13 57 16.81 -09 19 12.00	Yet to be Scheduled

1	A10_096	Black Holes in Transition: A Legacy ASTROSAT Project - 3 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	XTE_J1752-223	Yet to be Scheduled
1	A10_096	Black Holes in Transition: A Legacy ASTROSAT Project - 3 of 3	Black hole X-ray binaries (BHXBs) cycle through different accretion states rapidly, providing a time-resolved view of how matter behaves in a strong gravity environment. Simultaneous multi-wavelength observations are the optimal tool that exposes this view. However, these campaigns (connecting the evolving accretion inflow and jet outflow) have been achieved rarely. We request triggered 864ks observations by AstroSat of a BHXB as it transitions from the hard to the soft state, when the accretion disk and relativistic jets change significantly. We have submitted three proposals (A10_042/A10_051/A10_096), but ask to observe only one BHXB (out of 13 listed targets); we ask that these proposals are treated together, distributing the proposal as 624/192/48ks against Indian/International/Canadian stare-time allocations. Our group is well suited to attain the simultaneous multiwavelength observations that will maximize the scientific legacy of these observations; we will also make AstroSat data immediately public and have open procedures for joining our team.	H_1743-322	Yet to be Scheduled
	A10_097	Understanding the interplay between AGN and Star formation in Seyfert 2 galaxies with UVIT and MUSE observations	the unique scope to understand the recent star-forming activity in the central region of these galaxies. These UVIT observations will be combined with the MUSE optical IFU data to	IC 5063 20 52 02.3 -57 04 07.7	Yet to be Scheduled

,	A10_097	Understanding the interplay between AGN and Star formation in Seyfert 2 galaxies with UVIT and MUSE observations	AGN driven feedback/outflow plays an important role in regulating star formation in galaxies. Understanding the interplay between the AGN and recent star formation is crucial to know the role of AGN feedback in galaxy evolution. We propose to observe four Seyfert type AGN with the AstroSat/UVIT using F148W and F172M filters. The high-resolution UV imaging will provide the unique scope to understand the recent star-forming activity in the central region of these galaxies. These UVIT observations will be combined with the MUSE optical IFU data to decipher the recent star formation in the NLR region and the outflowing component of the AGN. The kinematics of stellar and gaseous component (from MUSE) combined with the recent SFH (from UVIT) will bring out the anatomy and the energetics of the central engine and its interplay with the surrounding.	09 45 42.1	Yet to be Scheduled
- 1	A10_097	Understanding the interplay between AGN and Star formation in Seyfert 2 galaxies with UVIT and MUSE observations	AGN driven feedback/outflow plays an important role in regulating star formation in galaxies. Understanding the interplay between the AGN and recent star formation is crucial to know the role of AGN feedback in galaxy evolution. We propose to observe four Seyfert type AGN with the AstroSat/UVIT using F148W and F172M filters. The high-resolution UV imaging will provide the unique scope to understand the recent star-forming activity in the central region of these galaxies. These UVIT observations will be combined with the MUSE optical IFU data to decipher the recent star formation in the NLR region and the outflowing component of the AGN. The kinematics of stellar and gaseous component (from MUSE) combined with the recent SFH (from UVIT) will bring out the anatomy and the energetics of the central engine and its interplay with the surrounding.	21 48 19.5	Yet to be Scheduled
	A10_097		AGN driven feedback/outflow plays an important role in regulating star formation in galaxies. Understanding the interplay between the AGN and recent star formation is crucial to know the role of AGN feedback in galaxy evolution. We propose to observe four Seyfert type AGN with the AstroSat/UVIT using F148W and F172M filters. The high-resolution UV imaging will provide the unique scope to understand the recent star-forming activity in the central region of these galaxies. These UVIT observations will be combined with the MUSE optical IFU data to decipher the recent star formation in the NLR region and the outflowing component of the AGN. The kinematics of stellar and gaseous component (from MUSE) combined with the recent SFH (from UVIT) will bring out the anatomy and the energetics of the central engine and its interplay with the surrounding.	10 48 23.5	Yet to be Scheduled

/	10_099	Nature of the accretion disk in a Seyfert 1 galaxy NGC~4748	We request 80 ks {\it AstroSat} observations of NGC~4748, a narrow line Seyfert 1 galaxy and one of the lowest black hole mass active galactic nucleus. This AGN exhibits strong and rapid variations in the UV/optical and X-ray bands. These variations have never been studied in detail to date in this AGN. The available observation shows dips and declining trend present in the UV and the X-ray bands. These features in the UV bands appear to be delayed on lightcrossing timescale with respect to the X-ray bands. Due to the lack of long UV/optical and X-ray observation, we propose long observation to study these variations using unprecedented multi-wavelength capability UVIT, SXT, LAXPC and CZTI instruments onboard {\it AstroSat}. The main aim of this proposal is to study the correlation between the UV/optical and the X-ray bands, and to derive the lag spectrum to study the nature of accretion disk.		Yet to be Scheduled
/	10_101	the origin of soft X-ray excess emission in	the observed SE. A comparison of the predicted and observed FUV emission will result in a	PG 0003+199 0 6 19.537	Yet to be Scheduled
	10_101	the origin of soft X-ray	the observed SE. A comparison of the predicted and observed FUV emission will result in a definitive test of the SE models. Additionally, we will also derive SEDs, bolometric luminosity,	PG 0050+124	Complete

ŀ	10_101	the origin of soft X-ray excess emission in	The origin of soft X-ray excess emission (SE) has remained a major problem in AGN research. Two physical models blurred reflection and Intrinsic Comptonised disk emission both describe the SE well but predict different FUV emission. We aim to measure simultaneously the FUV and soft X-ray spectra of the PG sample of UV/X-ray bright quasars that are relatively free of internal reddening. These observations will allow predicting the UV continuum based on the models for the observed SE. A comparison of the predicted and observed FUV emission will result in a definitive test of the SE models. Additionally, we will also derive SEDs, bolometric luminosity, accretion rate and measure correlations between fundamental parameters of accretion physics. Our proposed deep observations (18-30ks UVIT exposures) of 25 fields will result in rich simultaneous UV/X-ray datasets for a variety of sources that will be useful for a number of research problems.	PG 1501+106 15 4 1.194	Yet to be Scheduled
ļ	10_101	the origin of soft X-ray excess emission in	the observed SE. A comparison of the predicted and observed FUV emission will result in a	PG 1613+658 16 13 57.179	Complete
ŀ	10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	their nuclei and, therefore, represent relics of primordial galaxy formation. Only 15 of broad-line active galactic nuclei (AGN) powered by IMBHs have been identified. Requested observations: Here we propose to carry out multi-color far-UV and optical imaging of		Yet to be Scheduled

A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	active galactic nuclei (AGN) powered by IMBHs have been identified. Requested observations: Here we propose to carry out multi-color far-UV and optical imaging of	J171409d04p5849 06d2 17 14 09.04 58 49 06.20	Yet to be Scheduled
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" td="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><td>J110731d23p1347 12d8 11 07 31.23 13 47 12.80</td><td>Complete</td></m<100,000>	J110731d23p1347 12d8 11 07 31.23 13 47 12.80	Complete
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" td="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><td>J152304d97p1145 53d6 15 23 04.97 11 45 53.60</td><td>Yet to be Scheduled</td></m<100,000>	J152304d97p1145 53d6 15 23 04.97 11 45 53.60	Yet to be Scheduled

A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" th="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><th>J160531d84p1748 26d1 16 05 31.84 17 48 26.10</th><th>Yet to be Scheduled</th></m<100,000>	J160531d84p1748 26d1 16 05 31.84 17 48 26.10	Yet to be Scheduled
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	active galactic nuclei (AGN) powered by IMBHs have been identified. Requested observations: Here we propose to carry out multi-color far-UV and optical imaging of		Complete
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" td="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><td>J022849d51m090 153d8 02 28 49.51 -09 01 53.80</td><td>Complete</td></m<100,000>	J022849d51m090 153d8 02 28 49.51 -09 01 53.80	Complete

A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" th="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><th></th><th>Yet to be Scheduled</th></m<100,000>		Yet to be Scheduled
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	active galactic nuclei (AGN) powered by IMBHs have been identified. Requested observations: Here we propose to carry out multi-color far-UV and optical imaging of	J080359d96p0958 46d8 08 03 59.96 09 58 46.80	Yet to be Scheduled
A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" td="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><td></td><td>Complete</td></m<100,000>		Complete

	A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	active galactic nuclei (AGN) powered by IMBHs have been identified. Requested observations: Here we propose to carry out multi-color far-UV and optical imaging of	J162539d87p4048 04d2 16 25 39.87 40 48 04.20	Yet to be Scheduled
	A10_102	Far-ultraviolet imaging of host galaxies of bona fide intermediate-mass black holes	Context: Confirmation of a population of intermediate mass black holes (IMBHs; 20,000 <m<100,000 &="" (5="" (agn)="" (smbhs).="" 12="" 15="" accretion="" active="" agn="" alpha="" ancient="" and="" and,="" archival="" astrophysics,="" been="" black="" broad-line="" by="" carry="" civ="" clues="" continuum="" contributions="" data,="" disentangle="" estimate="" events="" evolution="" evolved="" expected="" far-uv="" first="" for="" formation="" formation.="" from="" fuv="" galactic="" galaxies="" galaxies,="" galaxy="" gas="" have="" here="" hold="" holes="" host="" identified.="" imaging="" imbh="" imbh-powered="" imbhs="" important="" in="" infrared="" intense="" long-standing="" luminosities="" ly="" m_sun)="" major="" merger="" modern="" multi-color="" must="" nuclei="" objectives="" objects).<="" observations:="" of="" one="" only="" onto="" optical="" or="" origin="" our="" out="" powered="" primordial="" problems="" processes:="" propose="" relics="" represent="" requested="" results:="" solve="" star="" supermassive="" td="" the="" their="" therefore,="" they="" time,="" times="" to="" understanding="" using="" uvit="" uvit.="" we="" will="" without=""><td>J144850d08p1608 03d1 14 48 50.08 16 08 03.10</td><td>Yet to be Scheduled</td></m<100,000>	J144850d08p1608 03d1 14 48 50.08 16 08 03.10	Yet to be Scheduled
,	A10_103	Globular cluster UVIT Legacy Survey (GlobULeS)	Globular Clusters (GCs) harbor exotic stars such as blue straggler stars (BSS), horizontal branch (HB), and extreme HB (EHB) stars which are found concentrated in the core of the GCs. The HST UV Globular cluster survey (Nardiello et al. 2018) has 55 GC observed in near-UV to optical filters. This treasury lacks FUV coverage, which is necessary to characterize the hot HB stars and BSS population. UVIT has the unique capability to create a complimentary treasury in the Far-UV passbands for the hot stars in the core of each cluster. In this proposal, we propose to image 9 clusters which are not imaged by so far UVIT, to create an FUV added HUGS catalog (see Scientific justification). The primary science goals are (1) a complete census of hot stars (2) identification of BSS formation pathways and (3) Effect of Helium abundance, age and metallicity on the morphology of the HB.	NGC 5139 13 26 47.24 -47 28 46.5	Complete

ŀ	10_103	Globular cluster UVIT Legacy Survey (GlobULeS)	Globular Clusters (GCs) harbor exotic stars such as blue straggler stars (BSS), horizontal branch (HB), and extreme HB (EHB) stars which are found concentrated in the core of the GCs. The HST UV Globular cluster survey (Nardiello et al. 2018) has 55 GC observed in near-UV to optical filters. This treasury lacks FUV coverage, which is necessary to characterize the hot HB stars and BSS population. UVIT has the unique capability to create a complimentary treasury in the Far-UV passbands for the hot stars in the core of each cluster. In this proposal, we propose to image 9 clusters which are not imaged by so far UVIT, to create an FUV added HUGS catalog (see Scientific justification). The primary science goals are (1) a complete census of hot stars (2) identification of BSS formation pathways and (3) Effect of Helium abundance, age and metallicity on the morphology of the HB.	NGC 6397 17 40 42.09 -53 40 27.6	Yet to be Scheduled
ŀ	10_103	Globular cluster UVIT Legacy Survey (GlobULeS)	treasury in the Far-UV passbands for the hot stars in the core of each cluster.	NGC 2419 07 38 08.47 38 52 56.8	Yet to be Scheduled
4	10_103	Legacy Survey (GlobULeS)	Globular Clusters (GCs) harbor exotic stars such as blue straggler stars (BSS), horizontal branch (HB), and extreme HB (EHB) stars which are found concentrated in the core of the GCs. The HST UV Globular cluster survey (Nardiello et al. 2018) has 55 GC observed in near-UV to optical filters. This treasury lacks FUV coverage, which is necessary to characterize the hot HB stars and BSS population. UVIT has the unique capability to create a complimentary treasury in the Far-UV passbands for the hot stars in the core of each cluster. In this proposal, we propose to image 9 clusters which are not imaged by so far UVIT, to create an FUV added HUGS catalog (see Scientific justification). The primary science goals are (1) a complete census of hot stars (2) identification of BSS formation pathways and (3) Effect of Helium abundance, age and metallicity on the morphology of the HB.	NGC 6981 20 53 27.70 -12 32 14.3	Yet to be Scheduled

		Globular Clusters (GCs) harbor exotic stars such as blue straggler stars (BSS), horizontal branch (HB), and extreme HB (EHB) stars which are found concentrated in the core of the GCs. The HST UV Globular cluster survey (Nardiello et al. 2018) has 55 GC observed in near-UV to optical filters. This treasury lacks FUV coverage, which is necessary to characterize the hot HB stars and BSS population. UVIT has the unique capability to create a complimentary treasury in the Far-UV passbands for the hot stars in the core of each cluster. In this proposal, we propose to image 9 clusters which are not imaged by so far UVIT, to create an FUV added HUGS catalog (see Scientific justification). The primary science goals are (1) a complete census of hot stars (2) identification of BSS formation pathways and (3) Effect of Helium abundance, age and metallicity on the morphology of the HB.	Terzan 8 19 41 44.41 -33 59 58.1	Yet to be Scheduled
A10_103	Globular cluster UVIT Legacy Survey (GlobULeS)	Globular Clusters (GCs) harbor exotic stars such as blue straggler stars (BSS), horizontal branch (HB), and extreme HB (EHB) stars which are found concentrated in the core of the GCs. The HST UV Globular cluster survey (Nardiello et al. 2018) has 55 GC observed in near-UV to optical filters. This treasury lacks FUV coverage, which is necessary to characterize the hot HB stars and BSS population. UVIT has the unique capability to create a complimentary treasury in the Far-UV passbands for the hot stars in the core of each cluster. In this proposal, we propose to image 9 clusters which are not imaged by so far UVIT, to create an FUV added HUGS catalog (see Scientific justification). The primary science goals are (1) a complete census of hot stars (2) identification of BSS formation pathways and (3) Effect of Helium abundance, age and metallicity on the morphology of the HB.		Partially Scheduled
A10_104	of Two Suspected Symbiotic Systems : SU Lyn and AA Cam: Part-1 - Regular		AA Cam 07 14 52.07 68 48 15.36	Yet to be Scheduled

A10_109	AstroSat broadband spectro-polarimetry of Cygnus X-1 high mass X-ray binary	Cygnus X-1, the `poster boy? for black hole binaries, exhibits strong X-ray emission due to accretion process and exhibits relativistic jets. From the extensive body of the observational and theoretical studies of accretion disk and relativistic jets, it is well accepted that the accretion disk, its atmosphere known as corona and the relativistic jet are all essential components of the accretion process and are intimately coupled to each other. Hard X-ray polarization measurements offer the unique possibility to distinguish emission from corona and jet, however, observationally the measurements are extremely difficult to carry out. CZTI onboard AstroSat has the unique capability of measuring polarization in 100 to 500 keV energy range. Previously, anticipated ToO observations in the hard state of Cygnus X-1 have yielded extremely promising results. Here we propose a more comprehensive study of Cygnus X-1 in its hard state as four anticipated ToO observations of 250 ks each.	Cygnus X-1	Yet to be Scheduled
A10_109	AstroSat broadband spectro-polarimetry of Cygnus X-1 high mass X-ray binary	measurements offer the unique possibility to distinguish emission from corona and jet, however,	Blank Sky	Yet to be Scheduled

A10_110	An FUV Study of Star Formation and Stellar/ AGN Feedback in Double Nuclei Galaxies.	formation induced by stellar or AGN outflows and hence detect AGN feedback on kiloparsec	MRK 721 10 23 32.6 10 57 35	Complete
 A10_110	An FUV Study of Star Formation and Stellar/ AGN Feedback in Double Nuclei Galaxies.	formation induced by stellar or AGN outflows and hence detect AGN feedback on kiloparsec scales in these merger remnants. We have chosen three of these sources for deep, follow-up	MRK 789 13 32 24.2 45236	Yet to be Scheduled
A10_110	An FUV Study of Star Formation and Stellar/ AGN Feedback in Double Nuclei Galaxies.	We propose to study the UV emission in 5 double nuclei galaxies that represent the final stages of galaxy mergers. It is now well established from observations and simulations that during galaxy interactions, gas is driven into the central regions of the merging galaxies resulting in star formation, and the formation of active galactic nuclei (AGN). Our main aim is to study star formation induced by stellar or AGN outflows and hence detect AGN feedback on kiloparsec scales in these merger remnants. We have chosen three of these sources for deep, follow-up observations, and included two dual active galactic nuclei (AGN) as well. The high spatial resolution of the UVIT will help us resolve the star forming regions, detect super star clusters, and enable us to separate the AGN emission from the disk UV emission. Hence, we request 75 ks of observing time to do FUV observations of our sample.	MRK 743 11 38 12.9 16046	Complete

	A10_110	An FUV Study of Star Formation and Stellar/ AGN Feedback in Double Nuclei Galaxies.	star formation, and the formation of active galactic nuclei (AGN). Our main aim is to study star formation induced by stellar or AGN outflows and hence detect AGN feedback on kiloparsec scales in these merger remnants. We have chosen three of these sources for deep, follow-up observations, and included two dual active galactic nuclei (AGN) as well. The high spatial	SDSS J104518.43+3519 13.5 10 45 18.0 35 19 13	Complete
,	A10_110		star formation, and the formation of active galactic nuclei (AGN). Our main aim is to study star formation induced by stellar or AGN outflows and hence detect AGN feedback on kiloparsec scales in these merger remnants. We have chosen three of these sources for deep, follow-up observations, and included two dual active galactic nuclei (AGN) as well. The high spatial	SDSS J110713.22+6506 06.6 11 07 13.2 65 06 07	Complete
,	A10_112	Regular thermonuclear bursts from the long-interval transient 4U 0836- 429	to compare against numerical models and hence constrain the fuel composition and neutron	4U 0836-429 8 37 22.992	Yet to be Scheduled

A10_113	FUV Imaging of long period comet C/2017	materials (CO/CO2), after H2O, can be studied using FUV observations. Comet, currently in its current journey into the inner solar system, does not yet exhibit strong optical emission but does		Yet to be Scheduled
A10_113	FUV Imaging of long period comet C/2017 K2	materials (CO/CO2), after H2O, can be studied using FUV observations. Comet, currently in its current journey into the inner solar system, does not yet exhibit strong optical emission but does	C/2017 K2 16 57 15.65 32 37 57.4	Yet to be Scheduled
A10_113	FUV Imaging of long period comet C/2017 K2	materials (CO/CO2), after H2O, can be studied using FUV observations. Comet, currently in its current journey into the inner solar system, does not yet exhibit strong optical emission but does	C/2017 K2 17 19 00.45 38 38 25.8	Yet to be Scheduled

A10_114	variability in Soufort 1	In NGC 6814, variable soft X-ray excess (SXE) and broad iron line have been observed, accompanied by a higher UV flux. The results obtained from XMM-Newton observations show that the fluxes of SXE and the broad iron line increase a factor of ~ 14 and ~ 2 times respectively, with an increase in the observed UV flux a factor of ~ 2. A long AstroSat observation will be helpful to investigate the nature of the UV/X-ray variability. We request for regular pointing observation of 150 ks exposure with SXT. This will also result in ~ 90 ks UVIT data. Further, we will use the data to investigate the far UV-lag. We will also investigate the far UV/X-ray connections using time-resolved spectroscopy.	NGC 6814 19 42 40.644 -10 19 24.57	Yet to be Scheduled
A10_11	Last Gasps of AGB stars while turning into Planetary Nebulae.	nave been in bursts of a steady now which starts interacting the surrounding medium. The time	HD44179 06 19 58.218 -10 38 14.70	Yet to be Scheduled
A10_11	Last Gasps of AGB stars while turning into Planetary Nebulae.	scales, the modes of ejections and to some extent the kinematics of the gas could be arrived at	Y CVn 12 45 07.82 45 26 24.90	Available in Current Schedule
A10_116	To understand the AGN Feedback processes in nearby LINER type galaxy NGC 1097	Active galactic nuclei (AGN) influences the properties of the host galaxy which is termed as "AGN feedback". The energy from the central region can either reduce the star formation (negative feedback) or, can enhance the star formation (positive feedback). Theoretically, there are predictions for both positive and negative AGN feedback. However, observational studies of AGN feedback is very limited. A detailed observational study of the star formation properties of the inner and outer region of active galaxies will be necessary to validate/verify various theoretical predictions. Here we propose a deep UV observation of a nearby active galaxy NGC 1097 to study star formation both inner and outer part of the host galaxy. Also, observations from X-ray payloads onboard AstroSat will be used construct and model the broadband spectral energy distribution for constraining the properties of AGN.	02 46 19.05	Complete

A10_119	The temporal and spectral study of GRS 1739-278 and H 1743-322 with the AstroSat. (Anticipated ToO)	and possible transition of spectral states. The large effective area of the LAXPC will allow the	GRS 1739-278 17 42 40.03 -27 44 52.70	Yet to be Scheduled
A10_121	Quiescence study of Be/X-ray binary pulsars 2S~1417-624 and EXO~2030+375 with Astrosat	known, enabling us to observe them close to their apastron passages, i.e. when the pulsar is expected to be in the quiescence state. Recent investigations have shown that a few Be/X-ray binary pulsars show pulsed X ray emission during guiescence, which challenges our current	2S 1417-624 14 21 12.8 -62 41 54	Complete

	Quiescence study of Be/X-ray binary pulsars 2S~1417-624 and EXO~2030+375 with Astrosat	expected to be in the quiescence state. Recent investigations have shown that a few Be/X-ray	EXO 2030+375 20 32 15.27 37 38 14.83	Yet to be Scheduled
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T1 13 58 19.33 24 29 49.39	Yet to be Scheduled
A10_123	Search for XUV disks in Blue Compact Dwarfs	GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\	BCD_T2 08 38 44.25 43 22 20.19	Yet to be Scheduled

A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T3 11 15 48.05 29 11 17.70	Complete
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T4 09 19 51.50 45 44 00.30	Yet to be Scheduled
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T6 11 30 11.34 44 15 18.90	Available in Current Schedule

A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T7 12 10 43.63 42 15 51.21	Available in Current Schedule
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T8 13 10 59.87 51 29 14.04	Available in Current Schedule
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T9 14 24 08.89 54 15 07.98	Yet to be Scheduled

A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T11 14 59 24.19 42 27 24.72	Yet to be Scheduled
A10_123	Search for XUV disks in Blue Compact Dwarfs	The discovery of spatially Extended Ultra Violet (XUV) disks in nearby spiral galaxies in the recent past has opened up a new window to the understanding of galaxy mass assembly over cosmic time. Observations of XUV emission were confined so far to nearby galaxies (upto z \$\sim\$ 0.05 or so) due to limited resolution and depth in the Far Ultra Violet (FUV) band of GALEX. In a recent work, based on deep UV observations of the GOODS-South Field using AstroSat, we find evidence of XUV Disk present in Blue Compact Dwarfs (BCDs) upto z \$\sim\$0.24, which have not been previously reported. This finding motivates us to request UVIT observations, 260150 seconds over 20 pointings (under ALTKP), for a sample of 59 local (z\$\sim0.03\$) BCDs selected from SDSS and search for a statistically significant sample of BCDs hosting XUV disks. This will help understand stellar mass assembly in low mass galaxies.	BCD_T17 11 34 00.53 49 06 17.03	Yet to be Scheduled